PORTUGALIAE MATHEMATICA Vol. 53 Fasc. 2 – 1996

A CRITERION OF IRRATIONALITY

DANIEL DUVERNEY

Abstract: We generalize P. Gordan's proof of the transcendence of e([3]; [5], p. 170), and obtain a criterion of irrationality (Theorem 1 below). Using this criterion, we can prove the irrationality of $f(z) = 1 + \sum_{n=1}^{+\infty} \frac{z^n}{v_1 v_2 \cdots v_n q^{n(n+1)/2}}$, when z, q and v_n satisfy suitable hypotheses (see Theorem 2).

Résumé: Nous généralisons la démonstration de la transcendance de e par P. Gordan ([3]; [5], p. 170), pour obtenir un critère d'irrationalité (Théorème 1 ci-après). Nous en donnons une application en prouvant l'irrationalité de $f(z) = 1 + \sum_{n=1}^{+\infty} \frac{z^n}{v_1 v_2 \cdots v_n q^{n(n+1)/2}}$, lorsque z, q et v_n vérifient des hypothèses convenables (voir le Théorème 2).

1 – Notations

Let $U = \{u_1, u_2, ..., u_n, ...\}$ be a sequence of non-zero complex numbers. We put $\mathcal{U}^0 = 1$ and:

(1)
$$\forall n \in \mathbb{N} - \{0\} : \mathcal{U}^n = u_1 \cdot u_2 \cdots u_n$$
$$\mathcal{U}^{-n} = [\mathcal{U}^n]^{-1}$$

Consider the complex function f defined by

(2)
$$f(z) = \sum_{n=0}^{+\infty} \frac{z^n}{\mathcal{U}^n}$$

We assume this series to fulfil d'Alembert's criterion.

Received: March 24, 1995; Revised: September 30, 1995.

A straightforward computation shows that

$$\limsup_{k \in \mathbb{N}} \left(\sum_{i=k+1}^{+\infty} |u_{k+1}^{-1}| \cdots |u_i^{-1}| |z|^{i-k} \right) < \infty ,$$

and we put

(3)
$$Mf(z) = \sup_{k \in \mathbb{N}} \sum_{i=k+1}^{+\infty} |u_{k+1}^{-1}| \cdots |u_i^{-1}| |z|^{i-k}$$

The sequence U being given, we define the U-Newton's binomial, for complex variables X and Y, by

(4)
$$(X \oplus Y)^n = \sum_{k=0}^n U_n^k X^k Y^{n-k}$$

where

(5)
$$U_n^k = \mathcal{U}^n \, \mathcal{U}^{-k} \, \mathcal{U}^{k-n} \; .$$

Now let P be a polynomial with complex coefficients

$$P(X) = \sum_{p=0}^{n} a_p X^p \; .$$

We put

(6)
$$P(\mathcal{U}) = \sum_{p=0}^{n} a_p \mathcal{U}^p ,$$

(7)
$$P(X \oplus Y) = \sum_{p=0}^{n} a_p (X \oplus Y)^p ,$$

(8)
$$P(\mathcal{U}\oplus z) = \sum_{p=0}^{n} a_p (\mathcal{U}\oplus z)^p = \sum_{p=0}^{n} a_p \sum_{k=0}^{p} \mathcal{U}^p \mathcal{U}^{k-p} z^{p-k} ,$$

(9)
$$|P|(X) = \sum_{p=0}^{n} |a_p| X^p .$$

One sees that, in fact, a number or a variable can be identified with a constant sequence, and that the ordinary exponentiation is a special case of (1).

2 – Criterion of irrationality

Theorem 1. Let $K = \mathbf{Q}$ or $\mathbf{Q}[i\sqrt{d}]$. Let A be the ring of the integers of K. Let $f(z) = \sum_{n=0}^{+\infty} \frac{z^n}{U^n}$ and $a, b \in K$. Assume that there exists $P \in K[X]$, such that

(10)
$$a P(\mathcal{U}) + b P(\mathcal{U} \oplus z) \in A - \{0\},$$

$$(11) |b| \cdot Mf(z) \cdot |P|(|z|) < 1$$

Then $a + b f(z) \neq 0$.

Proof: An easy computation shows that

(12)
$$\mathcal{U}^k f(z) = (\mathcal{U} \oplus z)^k + \mathcal{U}^k \sum_{i=k+1}^{+\infty} \mathcal{U}^{-i} z^i .$$

Let $P(X) = \sum_{k=0}^{N} a_k X^k$. From (12) we get at once

$$P(\mathcal{U}) f(z) = P(\mathcal{U} \oplus z) + \sum_{k=0}^{N} a_k \mathcal{U}^k \sum_{i=k+1}^{+\infty} \mathcal{U}^{-i} z^i .$$

Suppose that a + b f(z) = 0. Then $a P(\mathcal{U}) + b P(\mathcal{U}) f(z) = 0$, whence

$$a P(\mathcal{U}) + b P(\mathcal{U} \oplus z) + b \sum_{k=0}^{N} a_k \mathcal{U}^k \sum_{i=k+1}^{+\infty} \mathcal{U}^{-i} z^i = 0$$

Therefore

$$\left| a P(\mathcal{U}) + b P(\mathcal{U} \oplus z) \right| \le |b| \sum_{k=0}^{N} |a_k| |z|^k \sum_{i=k+1}^{+\infty} |u_{k+1}^{-1}| \cdots |u_i^{-1}| |z|^{i-k} .$$

Hence, using (3) and (11), we get

$$\left| a P(\mathcal{U}) + b P(\mathcal{U} \oplus z) \right| \le |b| \cdot Mf(z) \cdot |P|(|z|) < 1 .$$

But this is impossible, because $x \in A$ and $|x| < 1 \Rightarrow x = 0$ ([7], Th. 2-1, p. 46). Contradiction with (10).

3 - U-derivation

Definition 1. Let $f(X) = \sum_{n\geq 0} a_n X^n$ be a formal series with complex coefficients, and let $U = \{u_1, u_2, ..., u_n, ...\}$ be a sequence of complex numbers. The U-derivative of f is the formal series defined by:

$$\partial_U f(X) = \sum_{n \ge 1} a_n u_n X^{n-1}$$

Proposition 1. Let P be a polynomial of degree N. Then:

$$P(X \oplus z) = P(z) + \frac{\partial_U P(z)}{\mathcal{U}^1} X + \frac{\partial_U^2 P(z)}{\mathcal{U}^2} X^2 + \dots + \frac{\partial_U^N P(z)}{\mathcal{U}^N} X^N \, .$$

Proof: Just the same as the usual Taylor's formula (see [2]).

Corollary 1. Let P be a polynomial of degree $N \ge n$. Then $P(X \oplus z)$ has valuation at least n if, and only if:

$$P(z) = \partial_U P(z) = \dots = \partial_U^{n-1} P(z) = 0$$

Moreover, in that case:

$$P(\mathcal{U} \oplus z) = \sum_{k=n}^{N} \partial_U^k P(z)$$
.

4 – An application

Theorem 2. Let $K = \mathbf{Q}$ or $\mathbf{Q}[i\sqrt{d}]$. Let A be the ring of the integers of K. Let $m \in A$, |m| > 1. Let $V = \{v_1, v_2, ..., v_n, ...\}$ be a sequence of elements of A, with the following properties:

- **a**) $|v_n| = \exp(o(n));$
- **b**) There exists an infinite subset $P = \{\mathcal{B}_1, \mathcal{B}_2, ...\}$ of the set of the prime ideals of A, and a sequence $N = \{n_1, n_2, ...\}$ of rational integers, such that $v_{n_i} \in \mathcal{B}_i$ for each i, and $v_n \notin \mathcal{B}_i$ if $n < n_i$.
- c) For every $q \in \mathbb{N}^*$, there exists infinitely many $n_i \in N$ such that $v_n \notin \mathcal{B}_i$ for $n_i < n \leq n_i + q$.

Let
$$f(z) = 1 + \sum_{n=1}^{+\infty} \frac{z^n}{v_1 \, v_2 \cdots v_n \, m^{\frac{n(n+1)}{2}}}.$$

Then, if $z \in K^*$, $f(z) \notin K$.

Remark. By elementary considerations one can prove the irrationality of f(z) in the case where $z \in A - \{0\}$, with |z| < |m| (see [8], Theorem 1).

Corollary 2. Let $m \in A$, |m| > 1 and $h \in \mathbb{N} - \{0\}$. Then, if $z \in K^*$,

$$\sum_{n=0}^{+\infty} \frac{z^n}{(n!)^h \, m^{\frac{n(n+1)}{2}}} \notin K \; .$$

Corollary 2 is a well-known result; see [9], [1], [5]. On the other hand, the following result seems to be new:

Corollary 3. Let $m \in A$, |m| > 1. Let $p_1, p_2, ..., p_n, ...$ be the sequence of the prime numbers in \mathbb{N} . Then, if $z \in K^*$,

$$\sum_{n=1}^{+\infty} \frac{z^n}{p_1 p_2 \cdots p_n m^{\frac{n(n+1)}{2}}} \notin K .$$

It is likely that, if $z \in K^*$, $\sum_{n=0}^{+\infty} \frac{z^n}{p_1 p_2 \cdots p_n} \notin K$, but it is surely much more difficult to prove.

The proof of Theorem 2 rests on four lemmas; the proofs of lemmas 1 and 3 are elementary, and omitted.

Lemma 1. For every $h \in \mathbb{N}^*$, let

$$f_h(z) = \sum_{n=0}^{+\infty} \frac{z^n}{\mathcal{U}_h^n}, \quad z \in A - \{0\} ,$$

where $u_{n,h} = u_{n+h}$ and $\mathcal{U}_h^n = u_{1,h} \cdot u_{2,h} \cdots u_{n,h}$.

If there exists $a \in A$ and $b \in A - \{0\}$ such that a + b f(z) = 0, then:

(13)
$$a_h + b_h f_h(z) = 0, \quad \forall h \in \mathbb{N}^*, \quad \text{with:}$$

(14)
$$a_h = \mathcal{U}^h \left(a + b \sum_{n=0}^{h-1} \frac{z^n}{\mathcal{U}^n} \right) \in A ,$$

(15)
$$b_h = b z^h \in A - \{0\}.$$

Lemma 2. Suppose that all the u_i 's lie in A. Let \mathcal{B} be a prime ideal of A, such that $\mathcal{U}^{h+1} \notin \mathcal{B}$, $b \notin \mathcal{B}$ and $z \notin \mathcal{B}$. Then $a_h \notin \mathcal{B}$, or $a_{h+1} \notin \mathcal{B}$.

Proof of Lemma 2: If $a_h \in \mathcal{B}$ and $a_{h+1} \in \mathcal{B}$, as $u_{h+1} \notin \mathcal{B}$, we have:

$$\mathcal{U}^h\left(a+b\sum_{n=0}^{h-1}\frac{z^n}{\mathcal{U}^n}\right)\in\mathcal{B}$$
 and $\mathcal{U}^h\left(a+b\sum_{n=0}^{h}\frac{z^n}{\mathcal{U}^n}\right)\in\mathcal{B}$.

Subtracting these two numbers, we get $b z^h \in \mathcal{B}$, a contradiction.

Lemma 3. Let $P_n(X) = X^{n-1} \sum_{k=0}^n \Gamma_n^k z^{n-k} X^k$. Then

$$P_n(z) = \partial_U P_n(z) = \dots = \partial_U^{n-1} P_n(z) = 0$$

if, and only if, the Γ_n^k 's are solution of the system:

$$\begin{cases} \Gamma_n^0 + \Gamma_n^1 + \dots + \Gamma_n^n = 0\\ u_{n-1}\Gamma_n^0 + u_n\Gamma_n^1 + \dots + u_{2n-1}\Gamma_n^n = 0\\ \vdots\\ u_{n-1}\cdots u_1\Gamma_n^0 + u_n\cdots u_2\Gamma_n^1 + \dots + u_{2n-1}\cdots u_{n+1}\Gamma_n^n = 0. \end{cases}$$

Lemma 4. Let $M = (\alpha_{ij}), 1 \leq i \leq n, 1 \leq j \leq n+1$, be a matrix with coefficients in A. Then the system

(16)
$$M \cdot \begin{pmatrix} \Gamma_n^n \\ \Gamma_n^1 \\ \vdots \\ \Gamma_n^n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

admits a solution $(\Gamma_n^0, \Gamma_n^1, ..., \Gamma_n^n)$ such that:

(17) $\Gamma_n^i \in A \text{ for } i = 0, 1, ..., n$.

(18)
$$0 < \max |\Gamma_n^i| \le n^{\frac{n}{2}} H^n, \quad \text{with } H = \max |\alpha_{ij}|.$$

Moreover, if \mathcal{B} is a prime ideal of A and $\alpha_{ij} \in \mathcal{B}$ for every (i, j) such that $2 \leq j \leq i$, while $\alpha_{j-1,j} \notin \mathcal{B}$ for every $j \in \{2, ..., n+1\}$, then $\Gamma_n^0 \notin \mathcal{B}$.

Proof of Lemma 4: It is a well-known result of elementary linear algebra, that the system (16) admits for solution

$$\Gamma_n^k = (-1)^k \,\Delta_{n,k} \,, \quad 0 \le k \le n \;,$$

where $\Delta_{n,k}$ is the determinant one obtains by canceling the (k+1)-th column of M. Hence (17) is trivial, and (18) is Hadamard's upper bound for the module of a determinant [3].

The second part of the lemma results of the fact that we have only zeroes (modulo \mathcal{B}) under the diagonal of $\Delta_{n,0}$, while the terms on the diagonal are non zero (modulo \mathcal{B}).

Proof of Theorem 2: We can suppose that $z \in A$, as otherwise we may replace z by $Nz \in A$ and v_n by $v_n N$ with a suitable rational integer N. Put $u_n = v_n m^n$ and define Γ_n^k as a solution of the system

with h > n which satisfies

(19)
$$|\Gamma_n^k| \le n^{\frac{n}{2}} |m|^{n^3} (L_{3h})^{n^2} ,$$

where

(20)
$$L_n = \max_{1 \le i \le n} |v_i| \ .$$

The existence of such solutions follows from Lemma 4. Suppose a + b f(z) = 0 with $(a, b) \in A^2$, and put

(21)
$$P_{h,n}(X) = \frac{X^{n-1}}{m^{(n-1)h}} \sum_{k=0}^{n} \Gamma_n^k z^{n-k} X^k$$

To be able to apply Theorem 1, we have to obtain an upper bound for $|b_h| \cdot M(f_h) \cdot |P_{h,n}|(|z|)$. It is easy to see that $M(f_h) \leq B$, where $B = \sum_{n=0}^{+\infty} |z|^n |m|^{-\frac{n(n+1)}{2}}$. Hence, using (19), we get

$$|b_h| \cdot M(f_h) \cdot |P_{h,n}|(|z|) \le |b| |z|^h B \frac{|z|^{2n-1}}{|m|^{(n-1)h}} (n+1) n^{\frac{n}{2}} |m|^{n^3} (L_{3h})^{n^2}$$

But from a) it results that $L_{3h} = \exp(h \varepsilon(h))$, with $\lim_{h\to\infty} \varepsilon(h) = 0$, and we get

$$|b_h| \cdot M(f_h) \cdot |P_{h,n}|(|z|) \le |b| \, B|z|^{2n-1} \, (n+1) \, n^{\frac{n}{2}} \, |m|^{n^3} \Big[\frac{|z|}{|m|^{(n-1)}} \exp(n^2 \, \varepsilon(h)) \Big]^h$$

Let us choose n such that $\frac{|z|}{|m|^{(n-2)}} \leq \frac{1}{2}$. Such an n being fixed, there exists $h_0 \in \mathbb{N}$ such that

(22)
$$h \ge h_0 \implies |b_h| \cdot M(f_h) \cdot |P_{h,n}|(|z|) < 1.$$

We choose h such that h > n and $n + h = n_i$, n_i fulfilling the two conditions b) and c) with q = n. Therefore, using Lemma 4, we get $\Gamma_n^0 \notin \mathcal{B}_i$. It is clear that we can suppose $z \notin \mathcal{B}_i$, $m \notin \mathcal{B}_i$, and $b \notin \mathcal{B}_i$, by choosing n_i large enough. We can also suppose that $a_h \notin \mathcal{B}_i$ (otherwise we replace n by n - 1, h by h + 1, and use Lemma 2). For this choice of n and h condition (11) is fulfilled by (22).

Let us verify condition (10). We have

$$P_{n,h}(\mathcal{U}_h) = \frac{1}{m^{(n-1)h}} \sum_{k=0}^n \Gamma_n^k z^{n-k} \mathcal{U}_h^{n+k-1}$$

But $u_{h,n}$ is always divisible by m^h , whence $P_{n,h}(\mathcal{U}_h) \in A$. Moreover, the term corresponding to k = 0 does not lie in \mathcal{B}_i (hypothesis b)), while the other terms lie in \mathcal{B}_i (they contain $v_{n+h} = v_{n_i}$). Therefore $P_{n,h}(\mathcal{U}_h) \notin \mathcal{B}_i$.

Denote by $(X \oplus Y)^n$ the U_h -Newton's binomial, and use Corollary 1. We get

$$P_{n,h}(\mathcal{U}_h \oplus z) = \frac{1}{m^{h(n-1)}} \sum_{k=n}^{2n-1} \partial_{\mathcal{U}_h}^k Q_{n,h}(z) ,$$

where $Q_{n,h}(X) = X^{n-1} \sum_{j=0}^{n} \Gamma_n^j z^{n-j} X^j \in A[X].$

But each $\partial_{U_h}^k Q_{n,h}(z)$ contains the product of at least *n* consecutive terms of the sequence U_h , including u_{n+h} . Hence $P_{n,h}(\mathcal{U}_h \oplus z) \in \mathcal{B}_i$.

As $a_h \notin \mathcal{B}_i$, $P_{n,h}(\mathcal{U}_h) \notin \mathcal{B}_i$ and $P_{n,h}(\mathcal{U}_h \oplus z) \in \mathcal{B}_i$, we have

$$a_h P_{n,h}(\mathcal{U}_h) + b_h P_{n,h}(\mathcal{U}_h \oplus z) \notin \mathcal{B}_i$$
.

Therefore condition (10) is fulfilled, and the proof of Theorem 2 is complete. \blacksquare

ACKNOWLEDGEMENT – The author expresses his gratitude to the referee for valuable comments.

REFERENCES

 BÉZIVIN, J.-P. – Indépendance linéaire des valeurs des solutions transcendantes de certaines équations fonctionnelles II, Acta Arith., LV (1990), 233–240.

- [2] DUVERNEY, D. U-dérivation, Annales de la Faculté des Sciences de Toulouse, II(3) (1993), 323-335.
- [3] FISCHER, E. Über den Hadamardschen Determinantensatz, Arch. Math. (Basel), 13 (1908), 32–40.
- [4] GORDAN, P. Transzendenz von e und π , Math. Ann., 43 (1893), 222–224.
- [5] HAAS, M. Über die lineare Unabhängigkeit von Werten einer speziellen Reihe, Arch. Math., 56 (1991), 148–162.
- [6] HARDY, G.H. and WRIGHT, E.M. An introduction to the theory of numbers, Oxford Science Publications, 1989.
- [7] NARKIEWICZ Elementary and Analytic Theory of Algebraic Numbers, Springer-Verlag, 1990.
- [8] SANDOR, I. Despre irationalitatea unor serii factoriale, Studia Univ. Babes-Bolyai, 32 (1987), 13–17.
- [9] SKOLEM, T. Some theorems on irrationality and linear independence, Den 11te Skandinaviske Matematikerkongress Trondheim (1949), 77–98.

Daniel Duverney, 24 Place du Concert, 59800 Lille – FRANCE