A CRITERION OF IRRATIONALITY

Daniel Duverney

Abstract: We generalize P. Gordan's proof of the transcendence of e ([3]; [5], p. 170), and obtain a criterion of irrationality (Theorem 1 below). Using this criterion, we can prove the irrationality of $f(z)=1+\sum_{n=1}^{+\infty} \frac{z^{n}}{v_{1} v_{2} \cdots v_{n} q^{n(n+1) / 2}}$, when z, q and v_{n} satisfy suitable hypotheses (see Theorem 2).

Résumé: Nous généralisons la démonstration de la transcendance de e par P. Gordan ([3]; [5], p. 170), pour obtenir un critère d'irrationalité (Théorème 1 ci-après). Nous en donnons une application en prouvant l'irrationalité de $f(z)=1+\sum_{n=1}^{+\infty} \frac{z^{n}}{v_{1} v_{2} \cdots v_{n} q^{n(n+1) / 2}}$, lorsque z, q et v_{n} vérifient des hypothèses convenables (voir le Théorème 2).

1 - Notations

Let $U=\left\{u_{1}, u_{2}, \ldots, u_{n}, \ldots\right\}$ be a sequence of non-zero complex numbers. We put $\mathcal{U}^{0}=1$ and:

$$
\begin{gather*}
\forall n \in \mathbb{N}-\{0\}: \mathcal{U}^{n}=u_{1} \cdot u_{2} \cdots u_{n} \\
\mathcal{U}^{-n}=\left[\mathcal{U}^{n}\right]^{-1} \tag{1}
\end{gather*}
$$

Consider the complex function f defined by
(2)

$$
f(z)=\sum_{n=0}^{+\infty} \frac{z^{n}}{\mathcal{U}^{n}}
$$

We assume this series to fulfil d'Alembert's criterion.

[^0]A straightforward computation shows that

$$
\limsup _{k \in \mathbb{N}}\left(\sum_{i=k+1}^{+\infty}\left|u_{k+1}^{-1}\right| \cdots\left|u_{i}^{-1}\right||z|^{i-k}\right)<\infty
$$

and we put

$$
\begin{equation*}
M f(z)=\sup _{k \in \mathbb{N}} \sum_{i=k+1}^{+\infty}\left|u_{k+1}^{-1}\right| \cdots\left|u_{i}^{-1}\right||z|^{i-k} \tag{3}
\end{equation*}
$$

The sequence U being given, we define the U-Newton's binomial, for complex variables X and Y, by

$$
\begin{equation*}
(X \oplus Y)^{n}=\sum_{k=0}^{n} U_{n}^{k} X^{k} Y^{n-k} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
U_{n}^{k}=\mathcal{U}^{n} \mathcal{U}^{-k} \mathcal{U}^{k-n} \tag{5}
\end{equation*}
$$

Now let P be a polynomial with complex coefficients

$$
P(X)=\sum_{p=0}^{n} a_{p} X^{p}
$$

We put
(6)

$$
\begin{equation*}
P(\mathcal{U} \oplus z)=\sum_{p=0}^{n} a_{p}(\mathcal{U} \oplus z)^{p}=\sum_{p=0}^{n} a_{p} \sum_{k=0}^{p} \mathcal{U}^{p} \mathcal{U}^{k-p} z^{p-k} \tag{8}
\end{equation*}
$$

(9)

$$
|P|(X)=\sum_{p=0}^{n}\left|a_{p}\right| X^{p}
$$

One sees that, in fact, a number or a variable can be identified with a constant sequence, and that the ordinary exponentiation is a special case of (1).

2 - Criterion of irrationality

Theorem 1. Let $K=\mathbf{Q}$ or $\mathbf{Q}[i \sqrt{d}]$. Let A be the ring of the integers of K. Let $f(z)=\sum_{n=0}^{+\infty} \frac{z^{n}}{\mathcal{U}^{n}}$ and $a, b \in K$. Assume that there exists $P \in K[X]$, such that

$$
\begin{gather*}
a P(\mathcal{U})+b P(\mathcal{U} \oplus z) \in A-\{0\}, \tag{10}\\
|b| \cdot M f(z) \cdot|P|(|z|)<1 . \tag{11}
\end{gather*}
$$

Then $a+b f(z) \neq 0$.
Proof: An easy computation shows that

$$
\begin{equation*}
\mathcal{U}^{k} f(z)=(\mathcal{U} \oplus z)^{k}+\mathcal{U}^{k} \sum_{i=k+1}^{+\infty} \mathcal{U}^{-i} z^{i} \tag{12}
\end{equation*}
$$

Let $P(X)=\sum_{k=0}^{N} a_{k} X^{k}$. From (12) we get at once

$$
P(\mathcal{U}) f(z)=P(\mathcal{U} \oplus z)+\sum_{k=0}^{N} a_{k} \mathcal{U}^{k} \sum_{i=k+1}^{+\infty} \mathcal{U}^{-i} z^{i}
$$

Suppose that $a+b f(z)=0$. Then $a P(\mathcal{U})+b P(\mathcal{U}) f(z)=0$, whence

$$
a P(\mathcal{U})+b P(\mathcal{U} \oplus z)+b \sum_{k=0}^{N} a_{k} \mathcal{U}^{k} \sum_{i=k+1}^{+\infty} \mathcal{U}^{-i} z^{i}=0
$$

Therefore

$$
|a P(\mathcal{U})+b P(\mathcal{U} \oplus z)| \leq|b| \sum_{k=0}^{N}\left|a_{k}\right||z|^{k} \sum_{i=k+1}^{+\infty}\left|u_{k+1}^{-1}\right| \cdots\left|u_{i}^{-1}\right||z|^{i-k} .
$$

Hence, using (3) and (11), we get

$$
|a P(\mathcal{U})+b P(\mathcal{U} \oplus z)| \leq|b| \cdot M f(z) \cdot|P|(|z|)<1 .
$$

But this is impossible, because $x \in A$ and $|x|<1 \Rightarrow x=0$ ([7], Th. 2-1, p. 46). Contradiction with (10).

3 - U-derivation

Definition 1. Let $f(X)=\sum_{n>0} a_{n} X^{n}$ be a formal series with complex coefficients, and let $U=\left\{u_{1}, u_{2}, \ldots, u_{n}, \ldots\right\}$ be a sequence of complex numbers. The U-derivative of f is the formal series defined by:

$$
\partial_{U} f(X)=\sum_{n \geq 1} a_{n} u_{n} X^{n-1} .
$$

Proposition 1. Let P be a polynomial of degree N. Then:

$$
P(X \oplus z)=P(z)+\frac{\partial_{U} P(z)}{\mathcal{U}^{1}} X+\frac{\partial_{U}^{2} P(z)}{\mathcal{U}^{2}} X^{2}+\cdots+\frac{\partial_{U}^{N} P(z)}{\mathcal{U}^{N}} X^{N} .
$$

Proof: Just the same as the usual Taylor's formula (see [2]).
Corollary 1. Let P be a polynomial of degree $N \geq n$. Then $P(X \oplus z)$ has valuation at least n if, and only if:

$$
P(z)=\partial_{U} P(z)=\cdots=\partial_{U}^{n-1} P(z)=0 .
$$

Moreover, in that case:

$$
P(\mathcal{U} \oplus z)=\sum_{k=n}^{N} \partial_{U}^{k} P(z) .
$$

4 - An application

Theorem 2. Let $K=\boldsymbol{Q}$ or $\boldsymbol{Q}[i \sqrt{d}]$. Let A be the ring of the integers of K. Let $m \in A,|m|>1$. Let $V=\left\{v_{1}, v_{2}, \ldots, v_{n}, \ldots\right\}$ be a sequence of elements of A, with the following properties:
a) $\left|v_{n}\right|=\exp (o(n))$;
b) There exists an infinite subset $P=\left\{\mathcal{B}_{1}, \mathcal{B}_{2}, \ldots\right\}$ of the set of the prime ideals of A, and a sequence $N=\left\{n_{1}, n_{2}, \ldots\right\}$ of rational integers, such that $v_{n_{i}} \in \mathcal{B}_{i}$ for each i, and $v_{n} \notin \mathcal{B}_{i}$ if $n<n_{i}$.
c) For every $q \in \mathbb{N}^{*}$, there exists infinitely many $n_{i} \in N$ such that $v_{n} \notin \mathcal{B}_{i}$ for $n_{i}<n \leq n_{i}+q$.

Let $f(z)=1+\sum_{n=1}^{+\infty} \frac{z^{n}}{v_{1} v_{2} \cdots v_{n} m^{\frac{n(n+1)}{2}}}$.
Then, if $z \in K^{*}, f(z) \notin K$.
Remark. By elementary considerations one can prove the irrationality of $f(z)$ in the case where $z \in A-\{0\}$, with $|z|<|m|$ (see [8], Theorem 1).

Corollary 2. Let $m \in A,|m|>1$ and $h \in \mathbb{N}-\{0\}$. Then, if $z \in K^{*}$,

$$
\sum_{n=0}^{+\infty} \frac{z^{n}}{(n!)^{h} m^{\frac{n(n+1)}{2}}} \notin K
$$

Corollary 2 is a well-known result; see [9], [1], [5]. On the other hand, the following result seems to be new:

Corollary 3. Let $m \in A,|m|>1$. Let $p_{1}, p_{2}, \ldots, p_{n}, \ldots$ be the sequence of the prime numbers in \mathbb{N}. Then, if $z \in K^{*}$,

$$
\sum_{n=1}^{+\infty} \frac{z^{n}}{p_{1} p_{2} \cdots p_{n} m^{\frac{n(n+1)}{2}}} \notin K
$$

It is likely that, if $z \in K^{*}, \sum_{n=0}^{+\infty} \frac{z^{n}}{p_{1} p_{2} \cdots p_{n}} \notin K$, but it is surely much more difficult to prove.

The proof of Theorem 2 rests on four lemmas; the proofs of lemmas 1 and 3 are elementary, and omitted.

Lemma 1. For every $h \in \mathbb{N}^{*}$, let

$$
f_{h}(z)=\sum_{n=0}^{+\infty} \frac{z^{n}}{\mathcal{U}_{h}^{n}}, \quad z \in A-\{0\},
$$

where $u_{n, h}=u_{n+h}$ and $\mathcal{U}_{h}^{n}=u_{1, h} \cdot u_{2, h} \cdots u_{n, h}$.
If there exists $a \in A$ and $b \in A-\{0\}$ such that $a+b f(z)=0$, then:

$$
\begin{align*}
& a_{h}+b_{h} f_{h}(z)=0, \quad \forall h \in \mathbb{N}^{*}, \quad \text { with: } \tag{13}\\
& a_{h}=\mathcal{U}^{h}\left(a+b \sum_{n=0}^{h-1} \frac{z^{n}}{\mathcal{U}^{n}}\right) \in A \tag{14}\\
& b_{h}=b z^{h} \in A-\{0\} \tag{15}
\end{align*}
$$

Lemma 2. Suppose that all the u_{i} 's lie in A. Let \mathcal{B} be a prime ideal of A, such that $\mathcal{U}^{h+1} \notin \mathcal{B}, b \notin \mathcal{B}$ and $z \notin \mathcal{B}$. Then $a_{h} \notin \mathcal{B}$, or $a_{h+1} \notin \mathcal{B}$.

Proof of Lemma 2: If $a_{h} \in \mathcal{B}$ and $a_{h+1} \in \mathcal{B}$, as $u_{h+1} \notin \mathcal{B}$, we have:

$$
\mathcal{U}^{h}\left(a+b \sum_{n=0}^{h-1} \frac{z^{n}}{\mathcal{U}^{n}}\right) \in \mathcal{B} \quad \text { and } \quad \mathcal{U}^{h}\left(a+b \sum_{n=0}^{h} \frac{z^{n}}{\mathcal{U}^{n}}\right) \in \mathcal{B}
$$

Subtracting these two numbers, we get $b z^{h} \in \mathcal{B}$, a contradiction.
Lemma 3. Let $P_{n}(X)=X^{n-1} \sum_{k=0}^{n} \Gamma_{n}^{k} z^{n-k} X^{k}$. Then

$$
P_{n}(z)=\partial_{U} P_{n}(z)=\ldots=\partial_{U}^{n-1} P_{n}(z)=0
$$

if, and only if, the Γ_{n}^{k} 's are solution of the system:

$$
\left\{\begin{array}{rrrrr}
\Gamma_{n}^{0}+ & \Gamma_{n}^{1}+\cdots+ & \Gamma_{n}^{n}=0 \\
u_{n-1} \Gamma_{n}^{0}+ & u_{n} \Gamma_{n}^{1}+\cdots+ & u_{2 n-1} \Gamma_{n}^{n}=0 \\
& \vdots & & & \\
u_{n-1} \cdots u_{1} \Gamma_{n}^{0}+ & u_{n} \cdots u_{2} \Gamma_{n}^{1} & +\cdots+ & u_{2 n-1} \cdots u_{n+1} \Gamma_{n}^{n}=0
\end{array}\right.
$$

Lemma 4. Let $M=\left(\alpha_{i j}\right), 1 \leq i \leq n, 1 \leq j \leq n+1$, be a matrix with coefficients in A. Then the system

$$
M \cdot\left(\begin{array}{c}
\Gamma_{n}^{0} \tag{16}\\
\Gamma_{n}^{1} \\
\vdots \\
\Gamma_{n}^{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

admits a solution $\left(\Gamma_{n}^{0}, \Gamma_{n}^{1}, \ldots, \Gamma_{n}^{n}\right)$ such that:

$$
\begin{align*}
& \Gamma_{n}^{i} \in A \quad \text { for } i=0,1, \ldots, n \tag{17}\\
& 0<\max \left|\Gamma_{n}^{i}\right| \leq n^{\frac{n}{2}} H^{n}, \quad \text { with } H=\max \left|\alpha_{i j}\right| \tag{18}
\end{align*}
$$

Moreover, if \mathcal{B} is a prime ideal of A and $\alpha_{i j} \in \mathcal{B}$ for every (i, j) such that $2 \leq j \leq i$, while $\alpha_{j-1, j} \notin \mathcal{B}$ for every $j \in\{2, \ldots, n+1\}$, then $\Gamma_{n}^{0} \notin \mathcal{B}$.

Proof of Lemma 4: It is a well-known result of elementary linear algebra, that the system (16) admits for solution

$$
\Gamma_{n}^{k}=(-1)^{k} \Delta_{n, k}, \quad 0 \leq k \leq n
$$

where $\Delta_{n, k}$ is the determinant one obtains by canceling the $(k+1)$-th column of M. Hence (17) is trivial, and (18) is Hadamard's upper bound for the module of a determinant [3].

The second part of the lemma results of the fact that we have only zeroes (modulo \mathcal{B}) under the diagonal of $\Delta_{n, 0}$, while the terms on the diagonal are non zero (modulo \mathcal{B}).

Proof of Theorem 2: We can suppose that $z \in A$, as otherwise we may replace z by $N z \in A$ and v_{n} by $v_{n} N$ with a suitable rational integer N. Put $u_{n}=v_{n} m^{n}$ and define Γ_{n}^{k} as a solution of the system

$$
\left\{\begin{array}{rcrr}
\Gamma_{n}^{0}+ & \Gamma_{n}^{1}+\cdots+ & \Gamma_{n}^{n}=0 \\
v_{n-1+h} \Gamma_{n}^{0} & + & v_{n+h} m \Gamma_{n}^{1}+\cdots+ & v_{2 n-1+h} m^{n} \Gamma_{n}^{n}=0 \\
\vdots & & \\
v_{n-1+h} \cdots v_{1+h} \Gamma_{n}^{0} & + & v_{n+h} \cdots v_{2+h} m^{n-1} \Gamma_{n}^{1}+\cdots+ \\
& & +\cdots+v_{2 n-1+h} \cdots v_{n+1+h} m^{(n-1) n} \Gamma_{n}^{n}=0
\end{array}\right.
$$

with $h>n$ which satisfies

$$
\begin{equation*}
\left|\Gamma_{n}^{k}\right| \leq n^{\frac{n}{2}}|m|^{n^{3}}\left(L_{3 h}\right)^{n^{2}}, \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
L_{n}=\max _{1 \leq i \leq n}\left|v_{i}\right| \tag{20}
\end{equation*}
$$

The existence of such solutions follows from Lemma 4.
Suppose $a+b f(z)=0$ with $(a, b) \in A^{2}$, and put

$$
\begin{equation*}
P_{h, n}(X)=\frac{X^{n-1}}{m^{(n-1) h}} \sum_{k=0}^{n} \Gamma_{n}^{k} z^{n-k} X^{k} \tag{21}
\end{equation*}
$$

To be able to apply Theorem 1, we have to obtain an upper bound for $\left|b_{h}\right| \cdot M\left(f_{h}\right)$. $\left|P_{h, n}\right|(|z|)$. It is easy to see that $M\left(f_{h}\right) \leq B$, where $B=\sum_{n=0}^{+\infty}|z|^{n}|m|^{\frac{n(n+1)}{2}}$. Hence, using (19), we get

$$
\left|b_{h}\right| \cdot M\left(f_{h}\right) \cdot\left|P_{h, n}\right|(|z|) \leq|b||z|^{h} B \frac{|z|^{2 n-1}}{|m|^{(n-1) h}}(n+1) n^{\frac{n}{2}}|m|^{n^{3}}\left(L_{3 h}\right)^{n^{2}} .
$$

But from a) it results that $L_{3 h}=\exp (h \varepsilon(h))$, with $\lim _{h \rightarrow \infty} \varepsilon(h)=0$, and we get $\left|b_{h}\right| \cdot M\left(f_{h}\right) \cdot\left|P_{h, n}\right|(|z|) \leq|b| B|z|^{2 n-1}(n+1) n^{\frac{n}{2}}|m|^{n^{3}}\left[\frac{|z|}{|m|^{(n-1)}} \exp \left(n^{2} \varepsilon(h)\right)\right]^{h}$.

Let us choose n such that $\frac{|z|}{\left.|m|\right|^{n-2)}} \leq \frac{1}{2}$.
Such an n being fixed, there exists $h_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
h \geq h_{0} \Longrightarrow\left|b_{h}\right| \cdot M\left(f_{h}\right) \cdot\left|P_{h, n}\right|(|z|)<1 \tag{22}
\end{equation*}
$$

We choose h such that $h>n$ and $n+h=n_{i}, n_{i}$ fulfilling the two conditions b) and c) with $q=n$. Therefore, using Lemma 4 , we get $\Gamma_{n}^{0} \notin \mathcal{B}_{i}$. It is clear that we can suppose $z \notin \mathcal{B}_{i}, m \notin \mathcal{B}_{i}$, and $b \notin \mathcal{B}_{i}$, by choosing n_{i} large enough. We can also suppose that $a_{h} \notin \mathcal{B}_{i}$ (otherwise we replace n by $n-1, h$ by $h+1$, and use Lemma 2). For this choice of n and h condition (11) is fulfilled by (22).

Let us verify condition (10). We have

$$
P_{n, h}\left(\mathcal{U}_{h}\right)=\frac{1}{m^{(n-1) h}} \sum_{k=0}^{n} \Gamma_{n}^{k} z^{n-k} \mathcal{U}_{h}^{n+k-1} .
$$

But $u_{h, n}$ is always divisible by m^{h}, whence $P_{n, h}\left(\mathcal{U}_{h}\right) \in A$. Moreover, the term corresponding to $k=0$ does not lie in \mathcal{B}_{i} (hypothesis b)), while the other terms lie in \mathcal{B}_{i} (they contain $v_{n+h}=v_{n_{i}}$). Therefore $P_{n, h}\left(\mathcal{U}_{h}\right) \notin \mathcal{B}_{i}$.

Denote by $(X \oplus Y)^{n}$ the U_{h}-Newton's binomial, and use Corollary 1. We get

$$
P_{n, h}\left(\mathcal{U}_{h} \oplus z\right)=\frac{1}{m^{h(n-1)}} \sum_{k=n}^{2 n-1} \partial_{U_{h}}^{k} Q_{n, h}(z)
$$

where $Q_{n, h}(X)=X^{n-1} \sum_{j=0}^{n} \Gamma_{n}^{j} z^{n-j} X^{j} \in A[X]$.
But each $\partial_{U_{h}}^{k} Q_{n, h}(z)$ contains the product of at least n consecutive terms of the sequence U_{h}, including u_{n+h}. Hence $P_{n, h}\left(\mathcal{U}_{h} \oplus z\right) \in \mathcal{B}_{i}$.

As $a_{h} \notin \mathcal{B}_{i}, P_{n, h}\left(\mathcal{U}_{h}\right) \notin \mathcal{B}_{i}$ and $P_{n, h}\left(\mathcal{U}_{h} \oplus z\right) \in \mathcal{B}_{i}$, we have

$$
a_{h} P_{n, h}\left(\mathcal{U}_{h}\right)+b_{h} P_{n, h}\left(\mathcal{U}_{h} \oplus z\right) \notin \mathcal{B}_{i} .
$$

Therefore condition (10) is fulfilled, and the proof of Theorem 2 is complete.

ACKNOWLEDGEMENT - The author expresses his gratitude to the referee for valuable comments.

REFERENCES

[1] BÉZivin, J.-P. - Indépendance linéaire des valeurs des solutions transcendantes de certaines équations fonctionnelles II, Acta Arith., LV (1990), 233-240.
[2] Duverney, D. - U-dérivation, Annales de la Faculté des Sciences de Toulouse, II(3) (1993), 323-335.
[3] Fischer, E. - Über den Hadamardschen Determinantensatz, Arch. Math. (Basel), 13 (1908), 32-40.
[4] Gordan, P. - Transzendenz von e und π, Math. Ann., 43 (1893), 222-224.
[5] HaAs, M. - Über die lineare Unabhängigkeit von Werten einer speziellen Reihe, Arch. Math., 56 (1991), 148-162.
[6] Hardy, G.H. and Wright, E.M. - An introduction to the theory of numbers, Oxford Science Publications, 1989.
[7] Narkiewicz - Elementary and Analytic Theory of Algebraic Numbers, SpringerVerlag, 1990.
[8] Sandor, I. - Despre irationalitatea unor serii factoriale, Studia Univ. Babes-Bolyai, 32 (1987), 13-17.
[9] Skolem, T. - Some theorems on irrationality and linear independence, Den 11te Skandinaviske Matematikerkongress Trondheim (1949), 77-98.

Daniel Duverney,
24 Place du Concert,
59800 Lille - FRANCE

[^0]: Received: March 24, 1995; Revised: September 30, 1995.

