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Abstract

Let {xn} be a sequence of rational numbers greater than one such
that xn+1 ≥ x2

n for all sufficiently large n and let εn ∈ {−1, 1}. Un-
der certain growth conditions on the denominators of xn+1/x

2
n we prove

that the irrationality exponent of the number
∑∞

n=1 εn/xn is equal to
lim supn→∞(log xn+1/ log xn).
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1 Introduction

Let {xn}n≥1 be a sequence of rational numbers greater than one such that
xn+1 ≥ x2

n for all sufficiently large n and let εn ∈ {−1, 1}. We consider the sum

S =

∞∑
n=1

εn
xn

. (1.1)

An easy induction shows that there exist constants C > 0 and ρ ∈ (0, 1) such
that ∣∣∣∣ εnxn

∣∣∣∣ ≤ Cρ2
n

(n ≥ 1) .

Accordingly to [6], we call S a fast converging series. In this paper, we give in
certain cases the exact value of the irrationality exponent of S, where the irra-
tionality exponent µ(α) of an irrational number α is defined by the supremum
of the set of numbers µ for which the inequality∣∣∣∣α− p

q

∣∣∣∣ < 1

qµ

has infinitely many rational solutions p/q. Every irrational α has µ(α) ≥ 2 and,
if µ(α) > 2, then α is transcendental by Roth’s theorem.

For a non-zero rational number x, den(x) is defined by the smallest positive
integer d for which dx is an integer. Our main result is stated as follows:
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Theorem 1. Let {xn}n≥1 be a sequence of rational numbers greater than one
such that

xn+1 ≥ x2
n for all sufficiently large n (1.2)

and let εn ∈ {−1, 1}. Define

δ1 = den x1, δn+1 = δ2nden

(
xn+1

x2
n

)
(n ≥ 1). (1.3)

Assume that
log δn+1 = o(log xn) (1.4)

as n → ∞. Then the irrationality exponent of the number S defined in (1.1) is

µ (S) = lim sup
n→∞

log xn+1

log xn
.

Corollary 1. Let {An}n≥1 be a strictly increasing sequence of positive integers
and {Bn}n≥1 be a sequence of non-zero integers such that An/|Bn| > 1 for all
n. Set

z1 = A1/|B1|, zn+1 =
An+1/|Bn+1|
(An/Bn)2

(n ≥ 1)

and define
δ1 = den z1, δn+1 = δ2nden zn+1 (n ≥ 1).

Assume that the following conditions are satisfied:

(i) zn+1 ≥ 1 for all sufficiently large n,

(ii) log |Bn| = o(logAn) as n → ∞,

(iii) log δn+1 = o(logAn) as n → ∞.

Then

µ

( ∞∑
n=1

Bn

An

)
= lim sup

n→∞

logAn+1

logAn
.

Amou and Bugeaud [1] proved a similar result with zn+1 ≥ 2 for all suffi-
ciently large n.

Remark 1. The assumption (1.4) implies that if xn+1 = x2
n for all sufficiently

large n, then xn ∈ Z>1 for every n ≥ 1. Indeed, putting N = max{n ≥ 1 | xn ̸=
x2
n−1} with x0 = 1, we have xn = x2n−N

N and so δn = δ2
n−N

N (n ≥ N). Hence
we get 2n+1−N log δN = log δn+1 = o(2n) by (1.4), which implies that δN = 1.
Thus we have δn = 1 (n ≥ 1). Similarly, if zn = 1 for all sufficiently large n,
then Bn divides An for every n ≥ 1.

2



For the proof of Theorem 1, we express the sum S as a continued fraction in
the case x1 > 2 and xn+1 ≥ x2

n for all n ≥ 2 (see Section 2, Proposition 1). This
expansion is essentially given in [1], and also in [11] when xn are integers (see
Section 4.3). Our proof is similar to that of Amou-Bugeaud [1], however, we
must treat the continued fraction more carefully, because its partial quotients
under the assumption (1.2) are non-negative rationals possibly less than one.
So we study some of the properties of the continued fraction (see Section 2,
Lemmas 2, 3, 4, and 5), which will be used in the proof of Theorem 1 given in
Section 3. In the final Section 4, we give some applications of Theorem 1.

2 Continued fraction expansion of the series

We employ the standard notation for continued fractions:

[a0; a1, a2, . . . ] = lim
n→∞

[a0; a1, . . . , an],

where

[a0; a1, a2, . . . , an] = a0 +
1

a1 +
1

a2+
1

...+ 1
an

.

Define pn and qn by{
p−1 = 1, p0 = a0, pn = anpn−1 + pn−2,
q−1 = 0, q0 = 1, qn = anqn−1 + qn−2,

(n ≥ 1). (2.1)

Then [a0; a1, a2, . . . , an] = pn/qn, which is called the nth convergent. We use
the formulas:

pnqn−1 − pn−1qn = (−1)n+1, (2.2)

qn
qn−1

= [an; an−1, . . . , a2, a1], (2.3)

and also
[. . . , a, 0, b, . . . ] = [. . . , a+ b, . . . ] . (2.4)

Proposition 1. Let {xn}n≥1 be a sequence of rational numbers such that

z1 = x1 > 2, zn+1 = xn+1x
−2
n ≥ 1 (n ≥ 1) (2.5)

and let εn ∈ {−1, 1} with ε1 = 1. Then the sums

Sn =

n∑
k=1

εk
xk

have the following simple continued fraction expansions:

S2 =


[0; z1 − 1, 1, z2 − 1, z1] if ε2 = 1,
[0; z1, z2 − 1, 1, z1 − 1] if ε2 = −1

}
, z2 ̸= 1,

[0; z1 − 1, z1 + 1] if ε2 = 1,
[0; z1 + 1, z1 − 1] if ε2 = −1

}
, z2 = 1.
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For n ≥ 2, if
Sn =

[
0; a1, a2, . . . , aln−1, a

∗
ln

]
(2.6)

with a∗ln ̸= 1 is given, then writting

Sn+1 = [0; a1, a2, . . . , aln−1, aln , . . . , aln+1 ]

we have for zn+1 ̸= 1

Sn+1 =

{ [
0, a1, . . . , aln−1, a

∗
ln
, zn+1 − 1, 1, a∗ln − 1, aln−1, . . . , a1

]
if εn+1 = 1,[

0, a1, . . . , aln−1, a
∗
ln

− 1, 1, zn+1 − 1, a∗ln , aln−1, . . . , a1
]

if εn+1 = −1
(2.7)

and for zn+1 = 1

Sn+1 =

{ [
0, a1, . . . , aln−1, a

∗
ln

+ 1, a∗ln − 1, aln−1, . . . , a1
]

if εn+1 = 1,[
0, a1, . . . , aln−1, a

∗
ln

− 1, a∗ln + 1, aln−1, . . . , a1
]

if εn+1 = −1.
(2.8)

Furthermore,
q∗ln = xn (n ≥ 2), (2.9)

where p∗ln and q∗ln are rational numbers defined by (2.1) from [0; a1, . . . , aln−1, a
∗
ln
],

and
S = lim

n→∞
[0; a1, a2, . . . , aln ] .

Remark 2. If we denote the continued fraction expansion of Sn+1 with εn+1 =

1 in (2.7) or (2.8) as
[
0; a1, a2, . . . , a

∗
ln+1

]
, then the expansion of Sn+1 with

εn+1 = −1 is written by
[
0; a∗ln+1

, aln+1−1, . . . , a2, a1

]
.

Example 1. The continued fraction expansions of S3. Let (ε2, ε3) = (1, 1).

[0; z1 − 1, 1, z2 − 1, z1, z3 − 1, 1, z1 − 1, z2 − 1, 1, z1 − 1] if z2 ≠ 1,
[0; z1 − 1, z1 + 1, z3 − 1, 1, z1, z1 − 1] if z2 = 1

}
, z3 ̸= 1,

[0; z1 − 1, 1, z2 − 1, z1 + 1, z1 − 1, z2 − 1, 1, z1 − 1] if z2 ̸= 1,
[0; z1 − 1, z1 + 2, z1, z1 − 1] if z2 = 1

}
, z3 = 1.

Let (ε2, ε3) = (−1, 1).

[0; z1, z2 − 1, 1, z1 − 1, z3 − 1, 1, z1 − 2, 1, z2 − 1, z1] if z2 ̸= 1,
[0; z1 + 1, z1 − 1, z3 − 1, 1, z1 − 2, z1 + 1] if z2 = 1

}
, z3 ̸= 1,

[0; z1, z2 − 1, 1, z1, z1 − 2, 1, z2 − 1, z1] if z2 ̸= 1,
[0; z1 + 1, z1, z1 − 2, z1 + 1] if z2 = 1

}
, z3 = 1.

Remark 3. The length ln of the continued fraction expansion of Sn given in
Proposition 1 depends on the vanishing of zn+1 − 1; namely, ln+1 = 2ln + 2 if
zn+1 ̸= 1,= 2ln otherwise. The first ln − 1 partial coefficients a1, a2, . . . , aln−1

of Sn and Sn+1 coincide with each other. In the expansion of Sn, the last term
a∗ln = a1 for all n ≥ 3 independently of ε’s and z’s. On the other hand, the lnth
partial denominator and succeeding few ones of the expansion of Sn+1 depends
on εn+1 and the vanishing of zn+1 − 1.

4



The key of the proof of Proposition 1 is the following:

Lemma 1 (cf. [1, Lemma F′], [12]). Let t, a1, a2, . . . , ak be positive real numbers
and let pk/qk = [0; a1, a2, . . . , ak]. Assume that ak > 1 and t ≥ 1. Then

pk
qk

+
(−1)k

tq2k
= [0; a1, a2, . . . , ak, t− 1, 1, ak − 1, ak−1, . . . , a2, a1],

pk
qk

− (−1)k

tq2k
= [0; a1, a2, . . . , ak−1, ak − 1, 1, t− 1, ak, . . . , a2, a1].

Furthermore, we have q2k+2 = tq2k, where p2k+2/q2k+2 is the 2k+2th convergent
representing each of the continued fractions in the right-hand sides.

Amou and Bugeaud assumed in Lemma F′ a slightly stronger condition that
aj ≥ 1 (1 ≤ j ≤ k), however the proof indicated there is valid also in the above
cases aj > 0 (1 ≤ j ≤ k − 1) and ak > 1.

Proof of Proposition 1. The expansions of S2 with q∗l2 = x2 can be obtained
by direct calculation. Let n ≥ 2 and Sn be given as in (2.6) with a∗ln ̸= 1 and
q∗ln = xn. Assume that zn+1 ̸= 1. In the case εn+1 = 1, we apply Lemma 1 with
k = ln, t = zn+1, and qk = q∗ln and get

[0; a1, . . . , aln−1, a
∗
ln , zn+1 − 1, 1, a∗ln − 1, aln−1, . . . , a1]

=
p∗ln
q∗ln

+
(−1)ln

zn+1q∗ln
2 = Sn +

1

xn+1
= Sn+1

with q∗ln+1
= zn+1q

∗
ln

= zn+1x
2
n = xn+1. Similarly, we can prove (2.7) with

εn+1 = −1, as well as (2.8) by taking t = zn+1 = 1 in Lemma 1 and using
(2.4).

Now we study some of the properties of the continued fraction S = [0; a1, a2, a3, . . .].
The next lemma can be easily deduced from Proposition 1 with Example 1.

Lemma 2. Put

A = {1, z1, z1 ± 1, z1 ± 2, z2 − 1, z3 − 1} \ {0}.

Then {ak | k ≥ 1} ⊂ A ∪ {zj − 1 | j ≥ 4} \ {0}. Furthermore, if ak is of the
form zj − 1 for some j ≥ 4, then ak±1, ak±2 ∈ A.

Lemma 3. The following inequalities hold:

qk > c1qj (k > j ≥ 1), (2.10)

αk := [ak; ak+1, ak+2, . . .] > c1 (k ≥ 1), (2.11)

where c1 = min{[0; a, b] | a, b ∈ A} ∈ (0, 1).
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Proof. We first prove that

qk > c1qk−1 (k ≥ 1). (2.12)

If ak ∈ A, then qk > akqk−1 ≥ min{a | a ∈ A}qk−1 > c1qk−1 noting that
a > [0; 1, a] for any a ∈ A. Otherwise, ak−1, ak−2 ∈ A by Lemma 2. Hence,
we get qk/qk−1 > [0; ak−1, ak−2] ≥ c1 by (2.3). Similarly, we can prove (2.11).
Now, let k > j ≥ 1. If k − j is even, then qk > qk−2 > · · · > qj > c1qj . If
k − j ≥ 3 is odd, then k − (j + 1) ≥ 2 and is even. Hence, qk > qj+1 > c1qj by
(2.12). Thus, (2.10) is proved.

Lemma 4. For n ≥ 2, we have

qk > c1xn (ln < k ≤ ln+1). (2.13)

Proof. By (2.10), it is enough to show that max{qln , qln+1} ≥ xn. Suppose that
zn+1 ̸= 1. Then, we have by (2.7) and (2.1)

qln = q∗ln if εn+1 = 1, (2.14)

qln+1 = 1 · ((a∗ln − 1)qln−1 + qln−2) + qln−1 = q∗ln if εn+1 = −1. (2.15)

In the case zn+1 = 1, we have by (2.8) qln = (a∗ln +1)qln−1+ qln−2 = q∗ln + qln−1

if εn+1 = 1 and otherwise qln+1 = (a∗ln+1)qln+qln−1 = (a∗ln+1)((a∗ln−1)qln−1+
qln−2) + qln−1 > a∗lnqln−1 + qln−2 = q∗ln . In any case, we find max{qln , qln+1} ≥
xn recalling (2.9).

Lemma 5. For n ≥ 2, we have

δn+1pk, δn+1qk ∈ Z (ln < k ≤ ln+1), (2.16)

(δn+1pk, δn+1qk) ≤ δ2n+1 (ln < k ≤ ln+1). (2.17)

Proof. Since pk and qk are sums of linear monomials of aj (1 ≤ j ≤ k) by (2.1),

we have pk
∏k

j=1 den aj , qk
∏k

j=1 den aj ∈ Z, where
∏k

j=1 den aj |
∏ln+1

j=1 den aj =
δn+1 by Proposition 1, and hence (2.16) follows. The inequality (2.17) follows
from (2.2).

3 Proof of Theorem 1

For the proof of Theorem 1, we need the following lemma (cf., eg., [8], [10]):

Lemma 6. If α is an irrational number, then

µ(α) = µ

(
aα+ b

cα+ d

)
for any integers a, b, c, and d with ad− bc ̸= 0.
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Proof of Theorem 1. By Lemma 6, we may assume x1 > 2. So we may expand
the number S in the continued fraction as in Proposition 1. It follows from (2.1)
and (2.2) that ∣∣∣∣S − pk

qk

∣∣∣∣ = 1

qk(qk+1 + qk/αk+2)
, (3.1)

where αk is as in (2.11).
The proof will be divided into two cases. Case 1. zn+1 ̸= 1 for infinitely

many n. Case 2. zn+1 = 1 for all large n. Put for brevity

τ = lim sup
n→∞

log xn+1

log xn
. (3.2)

We note that 2 ≤ τ ≤ ∞ by (1.2).
Case 1. Now, we prove first that µ(S) ≥ τ . Let zn+1 ̸= 1 and let

l′n = ln if εn+1 = 1, l′n = ln + 1 if εn+1 = −1.

By (2.14), (2.15), and (2.9), we have

ql′n = xn, al′n+1 = zn+1 − 1, (3.3)

and al′n+2, al′n+3 ∈ A by (2.7) and Lemma 2. So 1/αl′n+2 > [0; al′n+2, al′n+3] ≥ c1,
where c1 is as in Lemma 3. Hence we have by (2.3)

ql′n+1 + ql′n/αl′n+2 > (zn+1 − 1 + c1)ql′n ≥ c1zn+1ql′n . (3.4)

For every positive integer n, define

rn =
δn+1(

δn+1pl′n , δn+1ql′n
) .

By Lemma 5, rnpl′n and rnql′n are coprime integers and

log rn = O (log δn+1) = o (log xn) .

It follows from (3.1) and (3.4) that∣∣∣∣S −
rnpl′n
rnql′n

∣∣∣∣ = ∣∣∣∣S −
pl′n
ql′n

∣∣∣∣ < 1

c1zn+1q2l′n
=

1

c1
(
rnql′n

)σn
, (3.5)

where σn is defined by

σn = 2 +
log zn+1 − 2 log rn

log(rnql′n)
=

log xn+1

log xn + log rn
.

We see that σn ≥ τ − ε for ε arbitrarily small and n large. Now the set of the
irreducible rational numbers {rnpl′n/rnql′n | n ≥ 1} is infinite. Therefore S is
irrational by (3.5) since τ ≥ 2 and µ(S) ≥ τ . In particular, µ(S) = ∞ if τ = ∞.
In what follows, we may assume that τ < ∞.
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Next, we prove that µ(S) ≤ τ . Let ε > 0 be sufficiently small and let p/q be
any reduced rational number with q sufficiently large. Assume first that there
exists an integer k such that p/q = pk/qk for some k = k(q). Let n be such that
l′n < k ≤ l′n+1. We define

sk =
δn+1

(δn+1pk, δn+1qk)

(
l′n < k < l′n+1

)
,

sl′n+1
=

δn+2(
δn+2pl′n+1

, δn+2ql′n+1

) .
By Lemma 5, skpk and skqk are coprime integers and therefore p = skpk and
q = skqk. Moreover

log sk = O (log δn+1) = o (log xn)
(
l′n < k < l′n+1

)
,

log sl′n+1
= O (log δn+2) = o (log xn+1) .

We have by (2.1), (2.10), and (2.11) for l′n < k ≤ l′n+1

qk+1 + qk/αk+2 < (ak+1 + 2c−1
1 )qk ≤ 2c−1

1 (ak+1 + 1)qk,

and so by (3.1) ∣∣∣∣S − p

q

∣∣∣∣ = ∣∣∣∣S − pk
qk

∣∣∣∣ > c1
2(ak+1 + 1)q2k

=
c1
2qτk

, (3.6)

where

τk =
2 log qk + log(ak+1 + 1)

log qk + log sk
= 2 +

log(ak+1 + 1)− 2 log sk
log qk + log sk

. (3.7)

If k = l′n+1, then by (3.3) we can write for arbitrarily small ε and large n

τl′n+1
=

2 log xn+1 + log zn+2

log xn+1 + log sl′n+1

≤
(
1 +

ε

2τ

)(
2 +

log zn+2

log xn+1

)
and therefore

τl′n+1
≤
(
1 +

ε

2τ

) log xn+2

log xn+1
≤ log xn+2

log xn+1
+ ε ≤ τ + 2ε. (3.8)

Assume that l′n < k < l′n+1. By (3.2), there exists a positive integer n0 = n0(ε)
such that

log zn+1 < (τ − 2 + ε) log xn (n ≥ n0). (3.9)

Since ak+1 + 1 ≤ max{z1 + 3, z2, z3, . . . , zn+1} by Lemma 2, we get for n suffi-
ciently large

log(ak+1 + 1) ≤ max

{
log(z1 + 3), max

2≤j≤n0

log zj , (τ − 2 + ε) max
n0≤j≤n

log xj

}
≤ (τ − 2 + ε) log xn
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using (3.9). Therefore by (3.7) and Lemma 4

τk ≤ 2 +
(τ − 2 + ε) log xn − 2 log sk

log xn + log c1 + log sk
≤ τ + 2ε. (3.10)

Hence by (3.6), (3.8), and (3.10), we have∣∣∣∣S − p

q

∣∣∣∣ > 1

qτ+2ε
(3.11)

for all p/q ∈ {pk/qk | k ≥ 1} with q sufficiently large.
Next, assume that p/q /∈ {pj/qj | j ≥ 1}. There exist k such that q1−ε

k ≤
2q < q1−ε

k+1. Let n such that ln < k ≤ ln+1. By Lemma 4, we have δn+1 < qεk,
and so

δn+1qkq <
1

2
q1+ε
k q1−ε

k+1 <
1

2cε1
qkqk+1 <

2

3
qkqk+1

noting that qk/qk+1 < 1/c1 by (2.12). Thus using (3.1) we have∣∣∣∣S − p

q

∣∣∣∣ ≥ ∣∣∣∣pq − δn+1pk
δn+1qk

∣∣∣∣− ∣∣∣∣S − pk
qk

∣∣∣∣ > 1

δn+1qkq
− 1

qkqk+1

>
1

3δn+1qkq
>

1

3q1+ε
k q

>
1

q2+4ε
,

for all p/q /∈ {pj/qj | j ≥ 1} with q sufficiently large, which together with (3.11)
implies µ(S) ≤ τ , and therefore, µ(S) = τ .
Case 2. Let zn+1 = 1 for all large n. Then we have τ = 2 and xn ∈ Z>1 for
every n ≥ 1 by Remark 1. So it is enough to prove that

µ

( ∞∑
n=1

εn

x2n−1

1

)
= 2,

which was shown already by Derevyanko [5] (see also Sondow [13, Corollary 3]),
and the proof of Theorem 1 is completed.

Proof of Corollary 1. Put xn = An/|Bn| and εn = sgn Bn (n ≥ 1). Then the
assumptions (i) and (iii) with (ii) lead to (1.2) and (1.4), respectively. Hence,
we can apply Theorem 1 getting

µ

( ∞∑
n=1

εn
xn

)
= lim sup

n→∞

logAn+1 − log |Bn+1|
logAn − log |Bn|

= lim sup
n→∞

logAn+1

logAn
.

4 Applications

In this section, we exhibit some examples obtained as applications of Theorem
1. We first remark that, in computing the irrationality exponents of a series,
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the first few terms are negligible by Lemma 6, namely,

µ

( ∞∑
n=1

εn
xn

)
= µ

( ∞∑
n=n0

εn
xn

)
holds for every fixed n0 ≥ 1.

4.1 Gap series

Example 2. For any integers a and b with 1 ≤ a ≤ b and b ≥ 2, we define the
sequence {xn} by x1 = a and for 2k ≤ n < 2k+1 with k ≥ 1

xn = a2
n−1

(
b

a

)2n−2+2n−22+2n−23+···+2n−2k

∈ Z>0.

Then, z1 = a and

zn =

{
b/a if n = 2k for some k ≥ 1
1 otherwise

,

and by Theorem 1

µ

( ∞∑
n=1

εn
xn

)
= 2.

In particular, if a = b, then we find xn = a2
n−1

and zn = 1 for all n ≥ 1, i.e.,
Derevyanko’s case stated above.

Example 3. For integers a ≥ 1 and b > 1, we have

µ

( ∞∑
n=1

εn
a2

n

b3n

)
= 3.

4.2 Engel series and Pierce series

Engel series and Pierce series are series of the forms

∞∑
n=1

1

q1q2 · · · qn
and

∞∑
n=1

(−1)n

q1q2 · · · qn

respectively, where {qn}n≥1 is a non-decreasing sequence integers such that
q1 ≥ 2. As an immediate consequence of Theorem 1, we have

Corollary 2. Let {qn}n≥1 be a sequence of positive integers. Assume that
q1 ≥ 2 and

q1q2 · · · qn |qn+1 (n ≥ 1) .

Then

µ

( ∞∑
n=1

εn
q1q2 · · · qn

)
= 1 + lim sup

n→∞

log qn+1

log (q1q2 · · · qn)
.
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4.3 Hone’s reciprocal sums

Let {xn} be a sequence of positive integers such that

x1 = 1, x2 ≥ 2, x2
n | xn+1, xn+1 ≥ 2x2

n. (4.1)

Hone [11] expanded the sum

S =

∞∑
n=1

1

xn

in the continued fraction and proved its transcendence. As an example, he took
up the sequence {xn} generated by the rational recurrence

xn+2xn = xM
n+1F (xn+1) (4.2)

from the initial values x0 = x1 = 1, where

M ≥ 3, F (x) ∈ Z≥0[x], d = degF ≥ 1, F (0) ̸= 0.

It is easily seen that {xn} is a sequence of positive integers satisfying the con-
dition (4.1). Hone proved that

log xn = c2λ
n +O(1), (4.3)

where c2 > 0 is a constant and

λ =
M + d+

√
(M + d)2 − 4

2
≥ 3 +

√
5

2
> 2.6

is one of the roots of the equation λ2 − (M + d)λ+ 1 = 0.

Corollary 3. Let {xn} be the sequence defined by (4.2) and let a be a positive
integer. Then we have

µ

( ∞∑
n=1

εn
an

xn

)
= λ.

4.4 Cahen’s constant

Sylvester’s sequence {Sn} is defined by the nonlinear recurrence

S0 = 2, Sn+1 = S2
n − Sn + 1 (n ≥ 0).

Cahen [3] proved the irrationality of the number

C =

∞∑
n=0

(−1)n

Sn − 1
=

∞∑
n=0

(−1)n

xn
= 0.64341 . . . ,

where xn = Sn − 1 satisfy the recurrence

x0 = 1, xn+1 = xn(xn + 1) (n ≥ 0). (4.4)

11



Davison and Shallit [4] established the transcendence of Cahen’s constant C via
its continued fraction expansion and Becker [2] improved their result by a variant
of Mahler’s method. Finch [9, Section 6.7] asked the arithmetical properties of
the number

∞∑
n=0

1

Sn − 1
= 1.691030 · · · .

Recently, the authors [7, Example 1.5] proved that, for any algebraic numbers
a ̸= 0 and γ ̸= Sn (n ≥ 0) and any positive integers l, the number

∞∑
n=0

an

(Sn − γ)l

is transcendental except when a = l = 1 and γ = 0, in which case
∞∑

n=0

1

Sn
= 1.

We consider the sequence {xn} of positive integers generated by

x0 = 1, xn+1 = xm
n F (xn) (n ≥ 0), (4.5)

where
m ≥ 2, F (x) ∈ Z≥0[x], d = degF ≥ 1, F (0) ̸= 0. (4.6)

Lemma 7. Let {xn} be the sequence defined by (4.5) with (4.6). Then

log xn = c(m+ d)n +O(1), (4.7)

where c > 0 is a constant.

Proof. By (4.5) and (4.6) we have

log xk = (m+ d) log xk−1 + log

(
c0 +

c1
xk−1

+ · · ·+ cd
xd
k−1

)
,

where ck ≥ 0 with c0cd ̸= 0 are the coefficients of F (x). Multiplying both sides
by (m+ d)n−k and summing up from k = 2 to n yields

log xn = (m+ d)n−1 log x1

+ (m+ d)n
n∑

k=2

1

(m+ d)k
log

(
c0 +

c1
xk−1

+ · · ·+ cd
xd
k−1

)
,

where the last sum converges as n → ∞, since xn ≥ 1 and m+ d ≥ 3. Thus we
can write

log xn

= (m+ d)n

(
log x1

m+ d
+

∞∑
k=2

1

(m+ d)k
log

(
c0 +

c1
xk−1

+ · · ·+ cd
xd
k−1

))

−
∞∑

k=n+1

1

(m+ d)k−n
log

(
c0 +

c1
xk−1

+ · · ·+ cd
xd
k−1

)
,
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which leads to (4.7).

Corollary 4. Let {xn} be the sequence defined by (4.5) and let a be a positive
integer. Then we have

µ

( ∞∑
n=0

εn
an

xn

)
= m+ d.
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