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Abstract : We use a method of Erdos in order to prove the linear
independence over Q of the numbers
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for every ¢ € Z, with |g| > 2. The main idea consists in considering the two
above series as Lambert series. This allows to expand them as power series of
1/q. The Taylor coefficients of these expansions are arithmetical functions,
whose properties allow to apply an elementary irrationality criterion, which
yields the result.
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1. Introduction

Let ¢ be a rational integer satisfying |g| > 2. Define

+oo 1 +oo n
o= Z s b= Z PR (1)
— qn — 1 — qTL — 1

The aim of this paper is to prove the following theorem.

Theorem 1 : Let q be a rational integer satisfying |q| > 2. Then the numbers
1, a and ( are linearly independent over Q.

This theorem generalizes a result of Paul Erdés, who proved in 1948 [7] the
irrationality of the following Lambert series:
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Here d (n) is the divisor function, defined by



d(n)=) 1 3)

z|n

By a very precise study of the properties of the divisor function, Erdds
succeeded in showing that the g-adic expansion of v is not ultimately periodic
for ¢ > 2, which implies the irrationality of ~.

The pattern of the proof of theorem 1 will be basically the same. In fact, « is
also a Lambert series (see [8], page 257, or [6], page 102, for the general
properties of Lambert series). To show it, first observe that
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Now, if we reorder the double series by putting n = r22, we see that
—+oo
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=2 (4)

n=1 q

where the arithmetical function a (n) is defined by
a(n) = Z 1. (5)
z2|n

Similarly, we have

“+oo
g3t (6)
n=1 q
where

b(n)= Z x. (7)

22| n

Following the ideas of Erdos, the proof of theorem 1 will use an elementary
criterion of irrationality, very similar to those used in [2], [4] and [5], which
will be proved in section 2. Then we will study in detail, in section 3, the
arithmetical functions a (n) and b (n). Theorem 1 will be proved in section 4.

It should be noted that Erdds’ result in [7] has been generalized by Peter
Borwein [1] in a very different way. By an explicit computation of the Padé
approximants of the fonction
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Borwein proved that L, () is irrational for every rational integer g such that
lg| > 2 and every xz € Q*, |z| < |g|.

Padé approximants allow in fact to prove that L, (z) is irrational for every non
zero rational z, |z| < |g|, and every rational ¢ = r/s satisfying

Logl|s| 1 [ 24
<—|3-4/5+—=].
Log|r| 4 + 2
See [3] for details. Moreover, the use of Padé approximants can be extended to
irrationality proofs for series whose general term involves second order

recurring sequences. For example, Matala-Aho and Prevost have proved in [9]
that

00 o
o= T (9)

n=1

1+45
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is irrational for every x € Q*, |z| < . Here F,, denotes the Fibonacci

sequence.

However, this g)owerful approach seems difficult to use in the case where g™ is
replaced by ¢™ , because it rests heavily on the fact that the function L,
satisfies a functional equation, namely

T

Ly (qz) = Lq (x) + (10)

1—2a
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There is no such functional equation if we replace ¢" by ¢" in L.

Arithmetic sequences of integers will play an important part in the proof of
theorem 1. We recall here an elementary lemma on their divisibility
properties. For non zero natural integers A, B, d and n, denote

Eapa(n)={ie{1,2,...,n} / ddivides Ai+ B}.

Lemma 1 : If A and B are coprime, then E4 g4 (n) has at most [g] +1

elements.

Proof : If d divides Ai + B, then A and d are coprime since A and B are
coprime. Hence the equation Ai + B =0 (mod d) has exactly one solution 4
satisfying 0 <ip < d — 1.

Then for every solution i of this equation, we have A (i —ip) = 0 (mod d) and
d divides i — ig. Hence the solutions ¢ are exactly all the numbers of the form
jd+ip, with j € Z.

The condition 1 < jd+ip < nleads to 0 < 5 < [g} .



This proves that E4 p 4 (n) has at most [%} + 1 elements.

2. An irrationality criterion
Theorem 2 : Let q € Z, |q| > 2. Let [0 (n)], oy be a sequence of rational

integers. Assume that there exist a sequence of natural integers (ny), oy with
ng > 2k such that, for every k sufficiently large,

Q‘e(nkik+1)a q2|0(’ﬂk71€+2), 7qk71|9(nk71)7 (11)
qk+1|9(nk+1)a qk+2|9(nk+2)a "'7q2k|9(nk+k)a

and satisfying

9 k+1
k~>+00 |q| lq]
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Assume that Z ( 18 convergent and is a rational number.
n=0

Then ¢* | 6 (ny) for every large k.

+oo
0 A
Proof : If E ﬁ = —, where A and g are rational integers, then for every k
" Iz
n=0
we have

nk—ka n ng—1 0 (n nr+k +oo 0(n
ZQjL 3 (n) . ) >y (n) _

n
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By (11), there exists an integer Ay, such that

np—k +oo
" 29(n)+ Ay, +9(nk) A= Z M

n ni—k Nk n
n=0 q q q n=nr+k+1 q

If we multiply this equality by ¢™*, we see that there exists an integer By such
that

n+nk+k+1)

1 [Bid® + 0 (ni)] — Ag™ = — k+12

From (11) we deduce that the integer p [Brg® + 6 (ni)] — Ag™* is equal to zero
for every large k. As nj > 2k, this implies that ¢* divides Byg® + 0 (ny) for
every large k, which proves theorem 2.

3. The arithmetical functions a(n) and b(n)



Lemma 2 : The arithmetical function a(n) is multiplicative. Moreover, if
n= pr‘ﬂ where the p; are distinct primes, then

| ot =TT ([2] +1) 09

3

Proof : First we observe that a(n) is multiplicative. Indeed, if r and s are
coprime then every integer x such that 22 divides rs is of the form x = z; 7o,
where 27 divides r and 23 divides s. Thus, if » and s are coprime,

rs) = ZZl = 2121 = a(r)a(s). (14)

LT ailr zi|s
Therefore we have to compute a (n) only when n = p®, where p is prime. But
in this case the integers x such that 22 divides p® are exactly 1, p, p?, -- -,

p[%], which proves lemma 2.

Lemma 3 : The arithmetical function b(n) is multiplicative. Moreover, if
n= I_Ipf"'7 where the p; are distinct primes, then
i

o) =T (1+p+p2 4+l 2]). (15)

Proof : Similar to the proof of lemma 2.

Lemma 4 : Let g € Z, |q| > 2. Let p be any prime satisfying p > |q|. Then
there exists a natural integer w = w (p) satisfying w < 2¢%, such that q divides
a(p”) and b(p), .

Proof : As Z/qZ has |q| elements, at least two of the |¢| + 1 numbers 1, 1 + p,
1+p% ..., 14+p+ ..+l are equal modulo ¢q. Therefore there exist two
integers ¢ and j, with 1 <i < j <|q|, such that

q|pi (1+p+...+pj_i).
As |q| < p, this yields ¢ | 1 +p + ... + p?~*. Now

lq|(j—i+1)—1 p‘q‘(j_i_‘—l) 1 pj i+l |lI| 1

k _ k(j— H—l
2 v - Z

Hence q | Zlql(J D=Lk Therefore, if we put w = 2 lel(G—i+1)—1], w
see by lemmas 2 and3that qgla@’)andq|b(®’).
Moreover, w < 2[|q| (|q| — 1)] < 2¢?, which proves lemma 4.

Lemma 5 : Assume that A and B are two coprime natural integers. Assume
that n > 8/ An + B. Then the set S of the numbers Ai+ B, for i =1, 2, ...,



n contains at least [2] squarefree numbers. If ( is one of these numbers, then
clearly a(¢) =b(¢) =1

Proof : Let p be any prime number.

If p > /An + B, then p? cannot divide any Ai + B, since i < n.

If p </ An + B, then by lemma 1 there exist at most [ ] + 1 numbers
p?

Ai + B such that p? divides Ai + B.
Hence the number of squarefree numbers in S is at least

n=n— >y ({ }+1>>n—nz —VAn+B.

p prime p prlme
p<VAn+B
1 tdu 3
But we have Z ng <7 / ui; e whence
p prlme

S 3 1 n> n

n—-n—— —.
e

Lemma 6 : Let n € N be sufficiently large, and let A and B be two coprime
natural integers such that A is odd and A < /n. Then the set S of the

numbers Ai+ B, for i =1, 2, ..., n contains at least {%} numbers ¢ such
that a(¢) =2 and b(¢) =3

Proof : As A is odd and A and B are coprime, there exists B’ such that

8B’ +4= B (mod A), 2B’ + 1 and A are coprime, and 1 < B’ < A. Clearly we
have, for every k € N, 2Ak +2B'+1 < A(2k + 3).

Hence the numbers

hi =424k +2B" +1) =8Ak + 8B’ + 4

belong to S for k =1,2, ..., [g] and n sufficiently large, since

hk§4A(2;+3> <An+ B

for n sufficiently large.
By lemma 5, the set T of the numbers 24k + 2B’ + 1 contains at least

1r1n
{8 [9}] squarefree numbers, and these numbers are odd. Hence the sequence

9 80
than 1 and 4, that is satisfying a({) =2 and b({) =1+2 = 3.

1
hi contains at least [8 [HH > [ﬁ} numbers ¢ with no other square divisors

Lemma 7 : Let n, A and B be non zero natural integers such that A and B
are coprime and max(A, B) < /n. Then



where D = {(z,y) e N®x N° / 2%y <n+ B ; 2’y =B (mod A)}.
Hence by lemma 1 we can write

(] [ ]
ZA:a(Ai—i—B) < ¥ ({ﬁ]ﬂ)g% 3 %+m

Lemma 8 : Let n, A and B be non zero natural integers such that A and B
are coprime, n > 3 and max(A, B) < /n. Then

4] n Logn
Z (Ai+ B) < 20— (17)

Proof : As in lemma 7, we have

[4] [4]
b(Ai+ B) = Z Z x < Z x,

1 =1 22| Ai+B (z,y)eD

where D = {(z,y) e N® x N° / 2%y <n+ B ; 2’y = B (mod A)} . We define

w3

%
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Dy=1q(z,y)eD [z <(n+B)

N[ =

Dy=q(@y)eD/y<(n+B)
It is easy to see that D C (Dy U D), whence

[

S

b(Ai+B)< Y x4+ Y (18)

(z,y)€D1 (z,y)€D2

Il
-

%

1
We put now s = {(n + B)4]



a) First we look for an upper bound for Z x.
(w,y)€D1
Recall that n > 3 and max (A4, B) < v/n. We have, as in the proof of lemma 7,

IR N (I R EES DD o

(z,y)€D1 z=1
SZ(Logs+1)+s2<A( Log(n—l—B)—i—l)—i—\/n—l—B
n n+ B n Logn
— (L Log2 + < 6L —<4 .
< gz (Logn + Log2+4) + “=y < 7 x GLogn + 1

b) Now we look for an upper bound for Z x. We have

(z,y)€D>
(vaTE]
> w= Z > =
(x,y)€D2 z2y<n+B

z2y=B (mod A)

For a given y, the congruence z?y = B (mod A) has at most two solutions T,y
and z , satisfying 0 < z1, < A, 0 <22, < A and 21 # z2. As A and B are
coprime, the solutions of this congruence are exactly the v = Ar + x4,(y) for
some g € {1,2} . Therefore

2
Z T s Z (Ar +q,)
(z,y)ED2 y=1 q::l(AT+:rq,y)2y§n+B
|:i n+B}
varm |1V
<24 > (r+1)

y
Asn(n—+1) <4 (n—1)° for n > 3, we obtain

JNEPL s L

n n n Logn
> v<— > J SX(Logn+Log2+2)§16 .
(z,y)E€D2 y=1

This completes the proof of lemma 8.
4. Proof of theorem 1

Assume that o and § are linearly dependent over Q. Then there exist two
rational integers A and p such that (A, u) # (0,0) and A+ pf € Q. This
means that

+
Z +“b da(n) +ub(n) o (19)

n=1



We will show that this is impossible by using theorem 2 with

0(n) =Aa(n)+ ub(n). (20)

In all the proof, k is a natural integer sufficiently large.
For every i > 1, we denote
(i +1
ti:¥, ri =1t +1, (21)
where t; is the i*" triangular number. We recall for further use that, for every
i>1,

i1 —ti =i+ 1. (22)

We denote by Cy, Csy, ..., positive real numbers which may depend on ¢, A or
1, but not on k, and we put € =0 or 1.

Step 1 : Let py, pa2, p3, ... be the series of the successive prime numbers
greater than k29, For every prime p, let w = w (p) be defined in lemma 4. We
will use the Chinese Remainder Theorem. First, there exists a natural number
N such that

m—k+1=py® mod pt(®)+1
M — k4 2 = py ) pees) modpg<P2>+1pg(p3)+1)
wWPry— w( Py, w(pr, ., )+1 w(pe, )41
e — 1= prk(,gk 2) .. 'ptk(,lfk 1) HlOdprk.(,zk 2) . 'ptk(,lfk 1)
W\ Pr w(p w(pr, )+1 w(p +1 23
e+ 1= prk( x) - tk(+1tk+l) modprk( v) . tk(+1tk+1) (23)
w\Pr w(p w(pr +1 w(pe +1
st ) (il
W\ Pro;, w(p W(Pro; +1 w(p +1
e+ k= p,.z(kif" ) .. .pti tar,) (mOdprz(kfk 1) B .thE" tar ) >

As the arithmetical functions a and b are multiplicative, we know by lemma 4
and (20) that (11) is satisfied, with ny replaced by n. Moreover, if we define

te—1 tok
w(pi)+1 w(pi)+1
Ak: sz (pi)+ le (pi)+ (24)
i=1 i=r)

we know by the Chinese Remainder Theorem that we can choose 7 satisfying

0 < < Ag. (25)



Now we look for an upper bound for A. Let p} =2, pb = 3, py =5, ... be the
series of all prime numbers. The elementary Chebyshev inequality

7w (n) > nlog2/Logn
immediatly yields

pl, < CinLogn. (26)

Therefore, as p; > k2°, we have by lemma 4

tok tak
A <[] Bhaen)™ ™ < TL 1O (i 12°) Log i+ 620)]
=1 =1

~
N
Bl

< TT [2C1%2 Log (262°)]*7+* < [201£20 Log (2k20)] (4" F1)E@k+1).

=1

Hence, for k sufficiently large, we have

me < A < exp (k7). (27)
kl(]
Step 2 : Put Ny = [A] . We consider now all the numbers of the form
k
U i =iAp +n, 1 =1,2,--- , Ni. (28)

It is clear that every uy ; satisfies the system of congruences (23), as 1, does.
Consequently, we have

(29)

qle(uk7l_k+1)7 q2|9(uk,z_k+2)) T qk_1|9(uk,z_1)7
qk+1|9(uk,i+1)a qk+2‘9(uk,i+2)a T q2k|9(uk,i+k)-

Recall that e = 0 or 1. We define

Ek:{iEN/1§i§Nk/a(uk,i)z1+E,b(uk,i):1+2£}. (30)

As (27) holds, we can apply lemmas 5 and 6, and we see that the cardinal of
Ej, satisfies

N, 2k10
Epl > |—| > 31
| k"{SO}_SlAk (31)
Now we look for an upper bound of the sum
10k
Se=Y_ > l0(n+up;+k+1). (32)
i€Er n=0

10



We clearly have (33):

N 10k1°
Se <)Y (Mam+iAx+me+k+1)+|ulb(n+iAg +me +k+1)).

1=1 n=0
1010 Ny,

<Y (Ma(Ar+n+nm+k+1) + |ulb(iAx +n+m + k +1)).

n=0 i=1

Now we show that Ax and n+ n + k + 1 are coprime. Indeed, if not, by (24)
it would exist some p; such that p; |n+mne +k+1, with 1 < j <t5_; or

Ty < j < top. But p; divides gy, 4+ k — g for some g between 0 and 2k — 1 and
g # k by (23). Therefore p; would divide n + g + 1, which is impossible
because p; > k?® and n+ g+ 1 < 10k*0 + 2k.

Hence Ay, and n + n; + k + 1 are coprime. By lemmas 7 and 8 we get

10k7° ok JRUDYSY 209k
< 4|A\| — +20Log?2 < . 4
Sk_nz_;)<||z4k+00g n |H|>_C’2 i (34)

10k1°
Denote myj, = min ( Y10 (n 4wk +k+ 1)|> .
i€ERy n=0
2](310 k202k10
By (31), (32) and (34) we have mkm <Oy A

Therefore my, < k! for every k sufficiently large.
Hence there exists iy € {1,2,---, N} such that

10k10
> 10 (n+ upg, + k4 1)) < B (35)

n=0

Define ng = uy 4, - By (29), (30) and (35), we have

q|9(nk_k+1)aq2|9(nk_k+2)a "'7qk_1‘9(nk_1)7
qk+1|9(nk+1)aqk+2|9(nk+2)a 7q2k|9(nk+k)a
SOMORTNO (n 4+ +  +1)] < B2

a(nk):1+5,b(nk):1+2€

(36)

Step 3 : We show now that theorem 2 applies with nj defined above. We
have only to check that (12) holds, since

ng > Ap > p1 > k2 > 2k.
We have by (36)

11



§°|0(n+nk+k+1)| T JFXO:O |0 (n+ng+k+1)
n=0 lq|" N n=10k10 lq|" )
+oo
<K 40y S (”+”k+nk+1)
n=10k10 lq|

Now 10k1% + ny + k + 1 < exp(k!?) by (27) and (28). Hence

too +00 10y)2
k
S e BRI gy Gy (RPN g
n=0 ‘q| |q‘ n=0 ‘q|
This proves that (12) holds. Theorem 2 applies and
q" | Aa (ng) + pb (ny,) (37)
for every large k. Taking successively € = 0 and € = 1 in (36), we obtain
¢" | X+ p
q® |2\ +3u

Hence ¢* divides A and p for every large k, which yields A = y = 0 and proves
theorem 1.
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