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Abstract : We use a method of Erdös in order to prove the linear
independence over Q of the numbers

1,
+∞∑
n=1

1
qn2 − 1

,

+∞∑
n=1

n

qn2 − 1

for every q ∈ Z, with |q| ≥ 2. The main idea consists in considering the two
above series as Lambert series. This allows to expand them as power series of
1/q. The Taylor coefficients of these expansions are arithmetical functions,
whose properties allow to apply an elementary irrationality criterion, which
yields the result.
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1. Introduction

Let q be a rational integer satisfying |q| ≥ 2. Define

α =
+∞∑
n=1

1
qn2 − 1

, β =
+∞∑
n=1

n

qn2 − 1
(1)

The aim of this paper is to prove the following theorem.

Theorem 1 : Let q be a rational integer satisfying |q| ≥ 2. Then the numbers
1, α and β are linearly independent over Q.

This theorem generalizes a result of Paul Erdös, who proved in 1948 [7] the
irrationality of the following Lambert series:

γ =
+∞∑
n=1

1
qn − 1

=
+∞∑
n=1

d (n)
qn

. (2)

Here d (n) is the divisor function, defined by
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d (n) =
∑
x|n

1 (3)

By a very precise study of the properties of the divisor function, Erdös
succeeded in showing that the q-adic expansion of γ is not ultimately periodic
for q ≥ 2, which implies the irrationality of γ.

The pattern of the proof of theorem 1 will be basically the same. In fact, α is
also a Lambert series (see [8] , page 257, or [6], page 102, for the general
properties of Lambert series). To show it, first observe that

α =
+∞∑
x=1

1
qx2 − 1

=
+∞∑
x=1

1
qx2

1

1− 1
qx2

=
+∞∑
x=1

+∞∑
r=1

1
qrx2 .

Now, if we reorder the double series by putting n = rx2, we see that

α =
+∞∑
n=1

a (n)
qn

, (4)

where the arithmetical function a (n) is defined by

a (n) =
∑
x2| n

1. (5)

Similarly, we have

β =
+∞∑
n=1

b (n)
qn

, (6)

where

b (n) =
∑
x2| n

x. (7)

Following the ideas of Erdös, the proof of theorem 1 will use an elementary
criterion of irrationality, very similar to those used in [2] , [4] and [5], which
will be proved in section 2. Then we will study in detail, in section 3, the
arithmetical functions a (n) and b (n). Theorem 1 will be proved in section 4.

It should be noted that Erdös’ result in [7] has been generalized by Peter
Borwein [1] in a very different way. By an explicit computation of the Padé
approximants of the fonction

Lq (x) =
+∞∑
n=1

x

qn − x
=

+∞∑
n=1

xn

qn − 1
, (8)
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Borwein proved that Lq (x) is irrational for every rational integer q such that
|q| ≥ 2 and every x ∈ Q∗, |x| < |q| .

Padé approximants allow in fact to prove that Lq (x) is irrational for every non
zero rational x, |x| < |q| , and every rational q = r/s satisfying

Log |s|
Log |r|

<
1
4

(
3−

√
5 +

24
π2

)
.

See [3] for details. Moreover, the use of Padé approximants can be extended to
irrationality proofs for series whose general term involves second order
recurring sequences. For example, Matala-Aho and Prevost have proved in [9]
that

δ =
+∞∑
n=1

xn

Fn
(9)

is irrational for every x ∈ Q∗, |x| < 1 +
√

5
2

. Here Fn denotes the Fibonacci
sequence.

However, this powerful approach seems difficult to use in the case where qn is
replaced by qn

2
, because it rests heavily on the fact that the function Lq

satisfies a functional equation, namely

Lq (qx) = Lq (x) +
x

1− x
. (10)

There is no such functional equation if we replace qn by qn
2

in Lq.

Arithmetic sequences of integers will play an important part in the proof of
theorem 1. We recall here an elementary lemma on their divisibility
properties. For non zero natural integers A, B, d and n, denote

EA,B,d (n) = {i ∈ {1, 2, ..., n} / d divides Ai+B} .

Lemma 1 : If A and B are coprime, then EA,B,d (n) has at most
[n
d

]
+ 1

elements.

Proof : If d divides Ai+B, then A and d are coprime since A and B are
coprime. Hence the equation Ai+B ≡ 0 (mod d) has exactly one solution i0
satisfying 0 ≤ i0 ≤ d− 1.
Then for every solution i of this equation, we have A (i− i0) ≡ 0 (mod d) and
d divides i− i0. Hence the solutions i are exactly all the numbers of the form
jd+ i0, with j ∈ Z.
The condition 1 ≤ jd+ i0 ≤ n leads to 0 ≤ j ≤

[n
d

]
.
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This proves that EA,B,d (n) has at most
[n
d

]
+ 1 elements.

2. An irrationality criterion

Theorem 2 : Let q ∈ Z, |q| ≥ 2. Let [θ (n)]n∈N be a sequence of rational
integers. Assume that there exist a sequence of natural integers (nk)k∈N with
nk ≥ 2k such that, for every k sufficiently large,

{
q | θ (nk − k + 1) , q2 | θ (nk − k + 2) , · · · , qk−1 | θ (nk − 1) ,
qk+1 | θ (nk + 1) , qk+2 | θ (nk + 2) , · · · , q2k | θ (nk + k) , (11)

and satisfying

lim
k→+∞

1

|q|k
+∞∑
n=0

|θ (n+ nk + k + 1)|
|q|n

= 0. (12)

Assume that
+∞∑
n=0

θ (n)
qn

is convergent and is a rational number.

Then qk | θ (nk) for every large k.

Proof : If
+∞∑
n=0

θ (n)
qn

=
λ

µ
, where λ and µ are rational integers, then for every k

we have

nk−k∑
n=0

θ (n)
qn

+
nk−1∑

n=nk−k+1

θ (n)
qn

+
θ (nk)
qnk

+
nk+k∑

n=nk+1

θ (n)
qn

+
+∞∑

n=nk+k+1

θ (n)
qn

=
λ

µ
.

By (11) , there exists an integer Ak such that

µ

[
nk−k∑
n=0

θ (n)
qn

+
Ak
qnk−k

+
θ (nk)
qnk

]
− λ = −µ

+∞∑
n=nk+k+1

θ (n)
qn

.

If we multiply this equality by qnk , we see that there exists an integer Bk such
that

µ
[
Bkq

k + θ (nk)
]
− λqnk = −µ 1

qk+1

+∞∑
n=0

θ (n+ nk + k + 1)
qn

.

From (11) we deduce that the integer µ
[
Bkq

k + θ (nk)
]
− λqnk is equal to zero

for every large k. As nk ≥ 2k, this implies that qk divides Bkqk + θ (nk) for
every large k, which proves theorem 2.

3. The arithmetical functions a(n) and b(n)
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Lemma 2 : The arithmetical function a(n) is multiplicative. Moreover, if
n =

∏
i

pαi
i , where the pi are distinct primes, then

a (n) =
∏
i

([αi
2

]
+ 1
)

(13)

Proof : First we observe that a(n) is multiplicative. Indeed, if r and s are
coprime, then every integer x such that x2 divides rs is of the form x = x1x2,
where x2

1 divides r and x2
2 divides s. Thus, if r and s are coprime,

a (rs) =
∑
x2
1|r

∑
x2
2|s

1 =
∑
x2
1|r

1
∑
x2
2|s

1 = a(r)a(s). (14)

Therefore we have to compute a (n) only when n = pα, where p is prime. But
in this case the integers x such that x2 divides pα are exactly 1, p, p2, · · · ,
p[
α
2 ], which proves lemma 2.

Lemma 3 : The arithmetical function b(n) is multiplicative. Moreover, if
n =

∏
i

pαi
i , where the pi are distinct primes, then

b (n) =
∏
i

(
1 + p+ p2 + · · ·+ p[

αi

2 ]
)
. (15)

Proof : Similar to the proof of lemma 2.

Lemma 4 : Let q ∈ Z, |q| ≥ 2. Let p be any prime satisfying p > |q| . Then
there exists a natural integer ω = ω (p) satisfying ω ≤ 2q2, such that q divides
a(pω) and b(pω), .

Proof : As Z/qZ has |q| elements, at least two of the |q|+ 1 numbers 1, 1 + p,
1 + p2, ..., 1 + p+ ...+ p|q| are equal modulo q. Therefore there exist two
integers i and j, with 1 ≤ i < j ≤ |q| , such that

q | pi
(
1 + p+ ...+ pj−i

)
.

As |q| < p, this yields q | 1 + p+ ...+ pj−i. Now

|q|(j−i+1)−1∑
k=0

pk =
p|q|(j−i+1) − 1

p− 1
=
pj−i+1 − 1
p− 1

|q|−1∑
k=0

pk(j−i+1).

Hence q |
∑|q|(j−i+1)−1
k=0 pk. Therefore, if we put ω = 2 [|q| (j − i+ 1)− 1] , we

see by lemmas 2 and 3 that q | a (pω) and q | b (pω) .
Moreover, ω ≤ 2 [|q| (|q| − 1)] ≤ 2q2, which proves lemma 4.

Lemma 5 : Assume that A and B are two coprime natural integers. Assume
that n ≥ 8

√
An+B. Then the set S of the numbers Ai+B, for i = 1, 2, ...,
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n contains at least
[n

8

]
squarefree numbers. If ζ is one of these numbers, then

clearly a(ζ) = b(ζ) = 1.

Proof : Let p be any prime number.
If p >

√
An+B, then p2 cannot divide any Ai+B, since i ≤ n.

If p ≤
√
An+B, then by lemma 1 there exist at most

[
n

p2

]
+ 1 numbers

Ai+B such that p2 divides Ai+B.
Hence the number of squarefree numbers in S is at least

η ≥ n−
∑

p prime

p≤
√
An+B

([
n

p2

]
+ 1
)
≥ n− n

∑
p prime

1
p2
−
√
An+B.

But we have
∑

p prime

1
p2
≤

+∞∑
r=2

1
r2
≤ 1

4
+
∫ +∞

2

du

u2
=

3
4
, whence

η ≥ n− 3
4
n− 1

8
n ≥ n

8
.

Lemma 6 : Let n ∈ N be sufficiently large, and let A and B be two coprime
natural integers such that A is odd and A ≤

√
n. Then the set S of the

numbers Ai+B, for i = 1, 2, ..., n contains at least
[ n

80

]
numbers ζ such

that a(ζ) = 2 and b(ζ) = 3.

Proof : As A is odd and A and B are coprime, there exists B′ such that
8B′ + 4 ≡ B (modA), 2B′ + 1 and A are coprime, and 1 ≤ B′ ≤ A. Clearly we
have, for every k ∈ N, 2Ak + 2B′ + 1 ≤ A (2k + 3) .
Hence the numbers

hk = 4 (2Ak + 2B′ + 1) = 8Ak + 8B′ + 4

belong to S for k = 1, 2, ...,
[n

9

]
and n sufficiently large, since

hk ≤ 4A
(

2n
9

+ 3
)
≤ An+B

for n sufficiently large.
By lemma 5, the set T of the numbers 2Ak + 2B′ + 1 contains at least[

1
8

[n
9

]]
squarefree numbers, and these numbers are odd. Hence the sequence

hk contains at least
[

1
8

[n
9

]]
≥
[ n

80

]
numbers ζ with no other square divisors

than 1 and 4, that is satisfying a(ζ) = 2 and b (ζ) = 1 + 2 = 3.

Lemma 7 : Let n, A and B be non zero natural integers such that A and B
are coprime and max(A,B) ≤

√
n. Then
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[ nA ]∑
i=1

a (Ai+B) ≤ 4
n

A
. (16)

Proof : Denote N0 = N− {0} . We have

[ nA ]∑
i=1

a (Ai+B) =
[ nA ]∑
i=1

∑
x2| Ai+B

1 ≤
∑

(x,y)∈D

1,

where D =
{

(x, y) ∈ N0 × N0 / x2y ≤ n+B ; x2y ≡ B (modA)
}
.

Hence by lemma 1 we can write

[ nA ]∑
i=1

a (Ai+B) ≤
[
√
n+B]∑
x=1

([ n

Ax2

]
+ 1
)
≤ n

A

[
√
n+B]∑
x=1

1
x2

+
√
n+B

≤ 2
n

A
+
n+
√
n√

n
≤ 2n

A
+

2n
A

=
4n
A
.

Lemma 8 : Let n, A and B be non zero natural integers such that A and B
are coprime, n ≥ 3 and max(A,B) ≤

√
n. Then

[ nA ]∑
i=1

b (Ai+B) ≤ 20
nLog n
A

(17)

Proof : As in lemma 7, we have

[ nA ]∑
i=1

b (Ai+B) =
[ nA ]∑
i=1

∑
x2| Ai+B

x ≤
∑

(x,y)∈D

x,

where D =
{

(x, y) ∈ N0 × N0 / x2y ≤ n+B ; x2y ≡ B (modA)
}
. We define

D1 =
{

(x, y) ∈ D / x ≤ (n+B)
1
4

}
,

D2 =
{

(x, y) ∈ D / y ≤ (n+B)
1
2

}
.

It is easy to see that D ⊂ (D1 ∪D2) , whence

[ nA ]∑
i=1

b (Ai+B) ≤
∑

(x,y)∈D1

x+
∑

(x,y)∈D2

x. (18)

We put now s =
[
(n+B)

1
4

]
.
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a) First we look for an upper bound for
∑

(x,y)∈D1

x.

Recall that n ≥ 3 and max (A,B) ≤
√
n. We have, as in the proof of lemma 7,

∑
(x,y)∈D1

x ≤
s∑

x=1

([ n

Ax2

]
+ 1
)
x ≤ n

A

s∑
x=1

1
x

+
s∑

x=1

x

≤ n

A
(Log s+ 1) + s2 ≤ n

A

(
1
4

Log (n+B) + 1
)

+
√
n+B

≤ n

4A
(Log n+ Log 2 + 4) +

n+B√
n+B

≤ n

4A
× 6 Log n+

2n
A
≤ 4

nLog n
A

.

b) Now we look for an upper bound for
∑

(x,y)∈D2

x. We have

∑
(x,y)∈D2

x =
[
√
n+B]∑
y=1

∑
x2y≤n+B

x2y≡B (modA)

x.

For a given y, the congruence x2y ≡ B (modA) has at most two solutions x1,y

and x2,y satisfying 0 < x1,y < A, 0 < x2,y < A and x1 6= x2. As A and B are
coprime, the solutions of this congruence are exactly the x = Ar + xq,y(y) for
some q ∈ {1, 2} . Therefore

∑
(x,y)∈D2

x ≤
[
√
n+B]∑
y=1

2∑
q=1

∑
(Ar+xq,y)2y≤n+B

(Ar + xq,y)

≤ 2A
[
√
n+B]∑
y=1

"
1
A

r
n+B
y

#
∑
r=0

(r + 1) .

As n (n+ 1) ≤ 4 (n− 1)2 for n ≥ 3, we obtain

∑
(x,y)∈D2

x ≤ 4
A

[
√
n+B]∑
y=1

n+B

y
≤ 4n

A
(Log n+ Log 2 + 2) ≤ 16

nLog n
A

.

This completes the proof of lemma 8.

4. Proof of theorem 1

Assume that α and β are linearly dependent over Q. Then there exist two
rational integers λ and µ such that (λ, µ) 6= (0, 0) and λα+ µβ ∈ Q. This
means that

+∞∑
n=1

λa (n) + µb (n)
qn

∈ Q. (19)
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We will show that this is impossible by using theorem 2 with

θ (n) = λa (n) + µb (n) . (20)

In all the proof, k is a natural integer sufficiently large.
For every i ≥ 1, we denote

ti =
i (i+ 1)

2
, ri = ti + 1, (21)

where ti is the ith triangular number. We recall for further use that, for every
i ≥ 1,

ti+1 − ti = i+ 1. (22)

We denote by C1, C2, ..., positive real numbers which may depend on q, λ or
µ, but not on k, and we put ε = 0 or 1.

Step 1 : Let p1, p2, p3, ... be the series of the successive prime numbers
greater than k20. For every prime p, let ω = ω (p) be defined in lemma 4. We
will use the Chinese Remainder Theorem. First, there exists a natural number
ηk such that



ηk − k + 1 ≡ pω(p1)
1

(
mod pω(p1)+1

1

)
ηk − k + 2 ≡ pω(p2)

2 p
ω(p3)
3

(
mod pω(p2)+1

2 p
ω(p3)+1
3

)
...

...

ηk − 1 ≡ p
ω(prk−2)
rk−2 · · · p

ω(ptk−1)
tk−1

(
mod p

ω(prk−2)+1
rk−2 · · · p

ω(ptk−1)+1

tk−1

)
ηk + 1 ≡ pω(prk)

rk · · · p
ω(ptk+1)
tk+1

(
mod p

ω(prk)+1
rk · · · p

ω(ptk+1)+1

tk+1

)
ηk + 2 ≡ p

ω(prk+1)
rk+1 · · · p

ω(ptk+2)
tk+2

(
mod p

ω(prk+1)+1
rk+1 · · · p

ω(ptk+2)+1

tk+2

)
...

...

ηk + k ≡ p
ω(pr2k−1)
r2k−1 · · · pω(pt2k)

t2k

(
mod p

ω(pr2k−1)+1
r2k−1 · · · pω(pt2k)+1

t2k

)

(23)

As the arithmetical functions a and b are multiplicative, we know by lemma 4
and (20) that (11) is satisfied, with nk replaced by ηk. Moreover, if we define

Ak =
tk−1∏
i=1

p
ω(pi)+1
i

t2k∏
i=rk

p
ω(pi)+1
i (24)

we know by the Chinese Remainder Theorem that we can choose ηk satisfying

0 ≤ ηk ≤ Ak. (25)
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Now we look for an upper bound for Ak. Let p′1 = 2, p′2 = 3, p′3 = 5, ... be the
series of all prime numbers. The elementary Chebyshev inequality

π (n) ≥ nLog 2/Log n

immediatly yields

p′n ≤ C1nLog n. (26)

Therefore, as pi ≥ k20, we have by lemma 4

Ak ≤
t2k∏
i=1

(
p′i+k20

)2q2+1 ≤
t2k∏
i=1

[
C1

(
i+ k20

)
Log

(
i+ k20

)]2q2+1

≤
t2k∏
i=1

[
2C1k

20 Log
(
2k20

)]2q2+1 ≤
[
2C1k

20 Log
(
2k20

)](q2+1)k(2k+1)
.

Hence, for k sufficiently large, we have

ηk ≤ Ak ≤ exp
(
k2.5

)
. (27)

Step 2 : Put Nk =

[
2k

10

Ak

]
. We consider now all the numbers of the form

uk,i = iAk + ηk, i = 1, 2, · · · , Nk. (28)

It is clear that every uk,i satisfies the system of congruences (23), as ηk does.
Consequently, we have

{
q | θ (uk,i − k + 1) , q2 | θ (uk,i − k + 2) , · · · , qk−1 | θ (uk,i − 1) ,
qk+1 | θ (uk,i + 1) , qk+2 | θ (uk,i + 2) , · · · , q2k | θ (uk,i + k) . (29)

Recall that ε = 0 or 1. We define

Ek = {i ∈ N / 1 ≤ i ≤ Nk / a (uk,i) = 1 + ε, b (uk,i) = 1 + 2ε} . (30)

As (27) holds, we can apply lemmas 5 and 6, and we see that the cardinal of
Ek satisfies

|Ek| ≥
[
Nk
80

]
≥ 2k

10

81Ak
(31)

Now we look for an upper bound of the sum

Sk =
∑
i∈Ek

10k10∑
n=0

|θ (n+ uk,i + k + 1)| . (32)
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We clearly have (33):

Sk ≤
Nk∑
i=1

10k10∑
n=0

(|λ| a (n+ iAk + ηk + k + 1) + |µ| b (n+ iAk + ηk + k + 1)) .

≤
10k10∑
n=0

Nk∑
i=1

(|λ| a (iAk + n+ ηk + k + 1) + |µ| b (iAk + n+ ηk + k + 1)) .

Now we show that Ak and n+ ηk + k + 1 are coprime. Indeed, if not, by (24)
it would exist some pj such that pj | n+ ηk + k + 1, with 1 ≤ j ≤ tk−1 or
rk ≤ j ≤ t2k. But pj divides ηk + k − g for some g between 0 and 2k − 1 and
g 6= k by (23). Therefore pj would divide n+ g + 1, which is impossible
because pj ≥ k20 and n+ g + 1 ≤ 10k10 + 2k.
Hence Ak and n+ ηk + k + 1 are coprime. By lemmas 7 and 8 we get

Sk ≤
10k10∑
n=0

(
4 |λ| 2

k10

Ak
+ 20 Log 2

k102k
10

Ak
|µ|

)
≤ C2

k202k
10

Ak
. (34)

Denote mk = min
i∈Ek

(
10k10∑
n=0
|θ (n+ uk,i + k + 1)|

)
.

By (31), (32) and (34) we have mk
2k

10

81Ak
≤ C2

k202k
10

Ak
.

Therefore mk ≤ k21 for every k sufficiently large.
Hence there exists ik ∈ {1, 2, · · · , Nk} such that

10k10∑
n=0

|θ (n+ uk,ik + k + 1)| ≤ k21. (35)

Define nk = uk,ik . By (29), (30) and (35), we have


q | θ (nk − k + 1) , q2 | θ (nk − k + 2) , · · · , qk−1 | θ (nk − 1) ,
qk+1 | θ (nk + 1) , qk+2 | θ (nk + 2) , · · · , q2k | θ (nk + k) ,∑10k10

n=0 |θ (n+ nk + k + 1)| ≤ k21.
a(nk) = 1 + ε, b (nk) = 1 + 2ε

(36)

Step 3 : We show now that theorem 2 applies with nk defined above. We
have only to check that (12) holds, since

nk ≥ Ak ≥ p1 ≥ k20 ≥ 2k.

We have by (36)

11



+∞∑
n=0

|θ (n+ nk + k + 1)|
|q|n

≤ k21 +
+∞∑

n=10k10

|θ (n+ nk + k + 1)|
|q|n

≤ k21 + C3

+∞∑
n=10k10

(n+ nk + k + 1)2

|q|n
.

Now 10k10 + nk + k + 1 ≤ exp(k10) by (27) and (28). Hence

+∞∑
n=0

|θ (n+ nk + k + 1)|
|q|n

≤ k21 +
C3

|q|10k
10

+∞∑
n=0

(
n+ exp(k10)

)2
|q|n

≤ 2k21.

This proves that (12) holds. Theorem 2 applies and

qk | λa (nk) + µb (nk) (37)

for every large k. Taking successively ε = 0 and ε = 1 in (36), we obtain{
qk | λ+ µ
qk | 2λ+ 3µ

Hence qk divides λ and µ for every large k, which yields λ = µ = 0 and proves
theorem 1.
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