ARITHMETICAL FUNCTIONS AND IRRATIONALITY OF LAMBERT SERIES

Daniel Duverney

13, rue de Roubaix, 59000 Lille, France
daniel.duverney@numericable.fr
Abstract : We use a method of Erdös in order to prove the linear independence over \mathbb{Q} of the numbers

$$
1, \sum_{n=1}^{+\infty} \frac{1}{q^{n^{2}}-1}, \sum_{n=1}^{+\infty} \frac{n}{q^{n^{2}}-1}
$$

for every $q \in \mathbb{Z}$, with $|q| \geq 2$. The main idea consists in considering the two above series as Lambert series. This allows to expand them as power series of $1 / q$. The Taylor coefficients of these expansions are arithmetical functions, whose properties allow to apply an elementary irrationality criterion, which yields the result.

Mathematics Subject Classification 2010 : 11J72, 11A25.
Key Words : Irrationality, Linear independence, Lambert Series, Arithmetical Functions.

1. Introduction

Let q be a rational integer satisfying $|q| \geq 2$. Define

$$
\begin{equation*}
\alpha=\sum_{n=1}^{+\infty} \frac{1}{q^{n^{2}}-1}, \beta=\sum_{n=1}^{+\infty} \frac{n}{q^{n^{2}}-1} \tag{1}
\end{equation*}
$$

The aim of this paper is to prove the following theorem.
Theorem 1 : Let q be a rational integer satisfying $|q| \geq 2$. Then the numbers $1, \alpha$ and β are linearly independent over \mathbb{Q}.

This theorem generalizes a result of Paul Erdös, who proved in 1948 [7] the irrationality of the following Lambert series:

$$
\begin{equation*}
\gamma=\sum_{n=1}^{+\infty} \frac{1}{q^{n}-1}=\sum_{n=1}^{+\infty} \frac{d(n)}{q^{n}} . \tag{2}
\end{equation*}
$$

Here $d(n)$ is the divisor function, defined by

$$
\begin{equation*}
d(n)=\sum_{x \mid n} 1 \tag{3}
\end{equation*}
$$

By a very precise study of the properties of the divisor function, Erdös succeeded in showing that the q-adic expansion of γ is not ultimately periodic for $q \geq 2$, which implies the irrationality of γ.

The pattern of the proof of theorem 1 will be basically the same. In fact, α is also a Lambert series (see [8], page 257, or [6], page 102, for the general properties of Lambert series). To show it, first observe that

$$
\alpha=\sum_{x=1}^{+\infty} \frac{1}{q^{x^{2}}-1}=\sum_{x=1}^{+\infty} \frac{1}{q^{x^{2}}} \frac{1}{1-\frac{1}{q^{x^{2}}}}=\sum_{x=1}^{+\infty} \sum_{r=1}^{+\infty} \frac{1}{q^{r x^{2}}} .
$$

Now, if we reorder the double series by putting $n=r x^{2}$, we see that

$$
\begin{equation*}
\alpha=\sum_{n=1}^{+\infty} \frac{a(n)}{q^{n}}, \tag{4}
\end{equation*}
$$

where the arithmetical function $a(n)$ is defined by

$$
\begin{equation*}
a(n)=\sum_{x^{2} \mid n} 1 . \tag{5}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\beta=\sum_{n=1}^{+\infty} \frac{b(n)}{q^{n}} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
b(n)=\sum_{x^{2} \mid n} x . \tag{7}
\end{equation*}
$$

Following the ideas of Erdös, the proof of theorem 1 will use an elementary criterion of irrationality, very similar to those used in [2], [4] and [5], which will be proved in section 2 . Then we will study in detail, in section 3, the arithmetical functions $a(n)$ and $b(n)$. Theorem 1 will be proved in section 4 .

It should be noted that Erdös' result in [7] has been generalized by Peter Borwein [1] in a very different way. By an explicit computation of the Padé approximants of the fonction

$$
\begin{equation*}
L_{q}(x)=\sum_{n=1}^{+\infty} \frac{x}{q^{n}-x}=\sum_{n=1}^{+\infty} \frac{x^{n}}{q^{n}-1}, \tag{8}
\end{equation*}
$$

Borwein proved that $L_{q}(x)$ is irrational for every rational integer q such that $|q| \geq 2$ and every $x \in \mathbb{Q}^{*},|x|<|q|$.

Padé approximants allow in fact to prove that $L_{q}(x)$ is irrational for every non zero rational $x,|x|<|q|$, and every rational $q=r / s$ satisfying

$$
\frac{\log |s|}{\log |r|}<\frac{1}{4}\left(3-\sqrt{5+\frac{24}{\pi^{2}}}\right)
$$

See [3] for details. Moreover, the use of Padé approximants can be extended to irrationality proofs for series whose general term involves second order recurring sequences. For example, Matala-Aho and Prevost have proved in [9] that

$$
\begin{equation*}
\delta=\sum_{n=1}^{+\infty} \frac{x^{n}}{F_{n}} \tag{9}
\end{equation*}
$$

is irrational for every $x \in \mathbb{Q}^{*},|x|<\frac{1+\sqrt{5}}{2}$. Here F_{n} denotes the Fibonacci sequence.

However, this powerful approach seems difficult to use in the case where q^{n} is replaced by $q^{n^{2}}$, because it rests heavily on the fact that the function L_{q} satisfies a functional equation, namely

$$
\begin{equation*}
L_{q}(q x)=L_{q}(x)+\frac{x}{1-x} \tag{10}
\end{equation*}
$$

There is no such functional equation if we replace q^{n} by $q^{n^{2}}$ in L_{q}.
Arithmetic sequences of integers will play an important part in the proof of theorem 1 . We recall here an elementary lemma on their divisibility properties. For non zero natural integers A, B, d and n, denote

$$
E_{A, B, d}(n)=\{i \in\{1,2, \ldots, n\} / d \text { divides } A i+B\}
$$

Lemma 1 : If A and B are coprime, then $E_{A, B, d}(n)$ has at most $\left[\frac{n}{d}\right]+1$ elements.

Proof : If d divides $A i+B$, then A and d are coprime since A and B are coprime. Hence the equation $A i+B \equiv 0(\bmod d)$ has exactly one solution i_{0} satisfying $0 \leq i_{0} \leq d-1$.
Then for every solution i of this equation, we have $A\left(i-i_{0}\right) \equiv 0(\bmod d)$ and d divides $i-i_{0}$. Hence the solutions i are exactly all the numbers of the form $j d+i_{0}$, with $j \in \mathbb{Z}$.
The condition $1 \leq j d+i_{0} \leq n$ leads to $0 \leq j \leq\left[\frac{n}{d}\right]$.

This proves that $E_{A, B, d}(n)$ has at most $\left[\frac{n}{d}\right]+1$ elements.

2. An irrationality criterion

Theorem 2 : Let $q \in \mathbb{Z},|q| \geq 2$. Let $[\theta(n)]_{n \in \mathbb{N}}$ be a sequence of rational integers. Assume that there exist a sequence of natural integers $\left(n_{k}\right)_{k \in \mathbb{N}}$ with $n_{k} \geq 2 k$ such that, for every k sufficiently large,

$$
\left\{\begin{array}{l}
q\left|\theta\left(n_{k}-k+1\right), q^{2}\right| \theta\left(n_{k}-k+2\right), \cdots, q^{k-1} \mid \theta\left(n_{k}-1\right), \tag{11}\\
q^{k+1}\left|\theta\left(n_{k}+1\right), q^{k+2}\right| \theta\left(n_{k}+2\right), \cdots, q^{2 k} \mid \theta\left(n_{k}+k\right)
\end{array}\right.
$$

and satisfying

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} \frac{1}{|q|^{k}} \sum_{n=0}^{+\infty} \frac{\left|\theta\left(n+n_{k}+k+1\right)\right|}{|q|^{n}}=0 \tag{12}
\end{equation*}
$$

Assume that $\sum_{n=0}^{+\infty} \frac{\theta(n)}{q^{n}}$ is convergent and is a rational number.
Then $q^{k} \mid \theta\left(n_{k}\right)$ for every large k.
Proof : If $\sum_{n=0}^{+\infty} \frac{\theta(n)}{q^{n}}=\frac{\lambda}{\mu}$, where λ and μ are rational integers, then for every k we have

$$
\sum_{n=0}^{n_{k}-k} \frac{\theta(n)}{q^{n}}+\sum_{n=n_{k}-k+1}^{n_{k}-1} \frac{\theta(n)}{q^{n}}+\frac{\theta\left(n_{k}\right)}{q^{n_{k}}}+\sum_{n=n_{k}+1}^{n_{k}+k} \frac{\theta(n)}{q^{n}}+\sum_{n=n_{k}+k+1}^{+\infty} \frac{\theta(n)}{q^{n}}=\frac{\lambda}{\mu} .
$$

By (11), there exists an integer A_{k} such that

$$
\mu\left[\sum_{n=0}^{n_{k}-k} \frac{\theta(n)}{q^{n}}+\frac{A_{k}}{q^{n_{k}-k}}+\frac{\theta\left(n_{k}\right)}{q^{n_{k}}}\right]-\lambda=-\mu \sum_{n=n_{k}+k+1}^{+\infty} \frac{\theta(n)}{q^{n}} .
$$

If we multiply this equality by $q^{n_{k}}$, we see that there exists an integer B_{k} such that

$$
\mu\left[B_{k} q^{k}+\theta\left(n_{k}\right)\right]-\lambda q^{n_{k}}=-\mu \frac{1}{q^{k+1}} \sum_{n=0}^{+\infty} \frac{\theta\left(n+n_{k}+k+1\right)}{q^{n}}
$$

From (11) we deduce that the integer $\mu\left[B_{k} q^{k}+\theta\left(n_{k}\right)\right]-\lambda q^{n_{k}}$ is equal to zero for every large k. As $n_{k} \geq 2 k$, this implies that q^{k} divides $B_{k} q^{k}+\theta\left(n_{k}\right)$ for every large k, which proves theorem 2 .
3. The arithmetical functions $a(n)$ and $b(n)$

Lemma 2: The arithmetical function $a(n)$ is multiplicative. Moreover, if $n=\prod_{i} p_{i}^{\alpha_{i}}$, where the p_{i} are distinct primes, then

$$
\begin{equation*}
a(n)=\prod_{i}\left(\left[\frac{\alpha_{i}}{2}\right]+1\right) \tag{13}
\end{equation*}
$$

Proof : First we observe that $a(n)$ is multiplicative. Indeed, if r and s are coprime, then every integer x such that x^{2} divides $r s$ is of the form $x=x_{1} x_{2}$, where x_{1}^{2} divides r and x_{2}^{2} divides s. Thus, if r and s are coprime,

$$
\begin{equation*}
a(r s)=\sum_{x_{1}^{2}\left|r x_{2}^{2}\right| s} 1=\sum_{x_{1}^{2} \mid r} 1 \sum_{x_{2}^{2} \mid s} 1=a(r) a(s) . \tag{14}
\end{equation*}
$$

Therefore we have to compute $a(n)$ only when $n=p^{\alpha}$, where p is prime. But in this case the integers x such that x^{2} divides p^{α} are exactly $1, p, p^{2}, \cdots$, $p^{\left[\frac{\alpha}{2}\right]}$, which proves lemma 2 .

Lemma 3 : The arithmetical function $b(n)$ is multiplicative. Moreover, if $n=\prod_{i} p_{i}^{\alpha_{i}}$, where the p_{i} are distinct primes, then

$$
\begin{equation*}
b(n)=\prod_{i}\left(1+p+p^{2}+\cdots+p^{\left[\frac{\alpha_{i}}{2}\right]}\right) \tag{15}
\end{equation*}
$$

Proof : Similar to the proof of lemma 2.
Lemma $4:$ Let $q \in \mathbb{Z},|q| \geq 2$. Let p be any prime satisfying $p>|q|$. Then there exists a natural integer $\omega=\omega(p)$ satisfying $\omega \leq 2 q^{2}$, such that q divides $a\left(p^{\omega}\right)$ and $b\left(p^{\omega}\right)$,

Proof : As $\mathbb{Z} / q \mathbb{Z}$ has $|q|$ elements, at least two of the $|q|+1$ numbers $1,1+p$, $1+p^{2}, \ldots, 1+p+\ldots+p^{|q|}$ are equal modulo q. Therefore there exist two integers i and j, with $1 \leq i<j \leq|q|$, such that

$$
q \mid p^{i}\left(1+p+\ldots+p^{j-i}\right)
$$

As $|q|<p$, this yields $q \mid 1+p+\ldots+p^{j-i}$. Now

$$
\sum_{k=0}^{|q|(j-i+1)-1} p^{k}=\frac{p^{|q|(j-i+1)}-1}{p-1}=\frac{p^{j-i+1}-1}{p-1} \sum_{k=0}^{|q|-1} p^{k(j-i+1)} .
$$

Hence $q \mid \sum_{k=0}^{|q|(j-i+1)-1} p^{k}$. Therefore, if we put $\omega=2[|q|(j-i+1)-1]$, we see by lemmas 2 and 3 that $q \mid a\left(p^{\omega}\right)$ and $q \mid b\left(p^{\omega}\right)$.
Moreover, $\omega \leq 2[|q|(|q|-1)] \leq 2 q^{2}$, which proves lemma 4.
Lemma 5 : Assume that A and B are two coprime natural integers. Assume that $n \geq 8 \sqrt{A n+B}$. Then the set S of the numbers $A i+B$, for $i=1,2, \ldots$,
n contains at least $\left[\frac{n}{8}\right]$ squarefree numbers. If ζ is one of these numbers, then clearly $a(\zeta)=b(\zeta)=1$.

Proof : Let p be any prime number.
If $p>\sqrt{A n+B}$, then p^{2} cannot divide any $A i+B$, since $i \leq n$.
If $p \leq \sqrt{A n+B}$, then by lemma 1 there exist at most $\left[\frac{n}{p^{2}}\right]+1$ numbers
$A i+B$ such that p^{2} divides $A i+B$.
Hence the number of squarefree numbers in S is at least

$$
\eta \geq n-\sum_{\substack{p \text { prime } \\ p \leq \sqrt{A n+B}}}\left(\left[\frac{n}{p^{2}}\right]+1\right) \geq n-n \sum_{p \text { prime }} \frac{1}{p^{2}}-\sqrt{A n+B}
$$

But we have $\sum_{p \text { prime }} \frac{1}{p^{2}} \leq \sum_{r=2}^{+\infty} \frac{1}{r^{2}} \leq \frac{1}{4}+\int_{2}^{+\infty} \frac{d u}{u^{2}}=\frac{3}{4}$, whence

$$
\eta \geq n-\frac{3}{4} n-\frac{1}{8} n \geq \frac{n}{8}
$$

Lemma 6 : Let $n \in \mathbb{N}$ be sufficiently large, and let A and B be two coprime natural integers such that A is odd and $A \leq \sqrt{n}$. Then the set S of the numbers $A i+B$, for $i=1,2, \ldots, n$ contains at least $\left[\frac{n}{80}\right]$ numbers ζ such that $a(\zeta)=2$ and $b(\zeta)=3$.

Proof : As A is odd and A and B are coprime, there exists B^{\prime} such that $8 B^{\prime}+4 \equiv B(\bmod A), 2 B^{\prime}+1$ and A are coprime, and $1 \leq B^{\prime} \leq A$. Clearly we have, for every $k \in \mathbb{N}, 2 A k+2 B^{\prime}+1 \leq A(2 k+3)$.
Hence the numbers

$$
h_{k}=4\left(2 A k+2 B^{\prime}+1\right)=8 A k+8 B^{\prime}+4
$$

belong to S for $k=1,2, \ldots,\left[\frac{n}{9}\right]$ and n sufficiently large, since

$$
h_{k} \leq 4 A\left(\frac{2 n}{9}+3\right) \leq A n+B
$$

for n sufficiently large.
By lemma 5 , the set T of the numbers $2 A k+2 B^{\prime}+1$ contains at least
$\left[\frac{1}{8}\left[\frac{n}{9}\right]\right]$ squarefree numbers, and these numbers are odd. Hence the sequence h_{k} contains at least $\left[\frac{1}{8}\left[\frac{n}{9}\right]\right] \geq\left[\frac{n}{80}\right]$ numbers ζ with no other square divisors than 1 and 4 , that is satisfying $a(\zeta)=2$ and $b(\zeta)=1+2=3$.

Lemma 7 : Let n, A and B be non zero natural integers such that A and B are coprime and $\max (A, B) \leq \sqrt{n}$. Then

$$
\begin{equation*}
\sum_{i=1}^{\left[\frac{n}{A}\right]} a(A i+B) \leq 4 \frac{n}{A} \tag{16}
\end{equation*}
$$

Proof : Denote $\mathbb{N}^{0}=\mathbb{N}-\{0\}$. We have

$$
\sum_{i=1}^{\left[\frac{n}{A}\right]} a(A i+B)=\sum_{i=1}^{\left[\frac{n}{A}\right]} \sum_{x^{2} \mid A i+B} 1 \leq \sum_{(x, y) \in D} 1
$$

where $D=\left\{(x, y) \in \mathbb{N}^{0} \times \mathbb{N}^{0} / x^{2} y \leq n+B ; x^{2} y \equiv B(\bmod A)\right\}$. Hence by lemma 1 we can write

$$
\begin{aligned}
\sum_{i=1}^{\left[\frac{n}{A}\right]} a(A i+B) & \leq \sum_{x=1}^{[\sqrt{n+B}]}\left(\left[\frac{n}{A x^{2}}\right]+1\right) \leq \frac{n}{A} \sum_{x=1}^{[\sqrt{n+B}]} \frac{1}{x^{2}}+\sqrt{n+B} \\
& \leq 2 \frac{n}{A}+\frac{n+\sqrt{n}}{\sqrt{n}} \leq \frac{2 n}{A}+\frac{2 n}{A}=\frac{4 n}{A}
\end{aligned}
$$

Lemma 8 : Let n, A and B be non zero natural integers such that A and B are coprime, $n \geq 3$ and $\max (A, B) \leq \sqrt{n}$. Then

$$
\begin{equation*}
\sum_{i=1}^{\left[\frac{n}{A}\right]} b(A i+B) \leq 20 \frac{n \log n}{A} \tag{17}
\end{equation*}
$$

Proof : As in lemma 7, we have

$$
\sum_{i=1}^{\left[\frac{n}{A}\right]} b(A i+B)=\sum_{i=1}^{\left[\frac{n}{A}\right]} \sum_{x^{2} \mid A i+B} x \leq \sum_{(x, y) \in D} x
$$

where $D=\left\{(x, y) \in \mathbb{N}^{0} \times \mathbb{N}^{0} / x^{2} y \leq n+B ; x^{2} y \equiv B(\bmod A)\right\}$. We define

$$
\begin{aligned}
& D_{1}=\left\{(x, y) \in D / x \leq(n+B)^{\frac{1}{4}}\right\} \\
& D_{2}=\left\{(x, y) \in D / y \leq(n+B)^{\frac{1}{2}}\right\}
\end{aligned}
$$

It is easy to see that $D \subset\left(D_{1} \cup D_{2}\right)$, whence

$$
\begin{equation*}
\sum_{i=1}^{\left[\frac{n}{A}\right]} b(A i+B) \leq \sum_{(x, y) \in D_{1}} x+\sum_{(x, y) \in D_{2}} x \tag{18}
\end{equation*}
$$

We put now $s=\left[(n+B)^{\frac{1}{4}}\right]$.
a) First we look for an upper bound for $\sum_{(x, y) \in D_{1}} x$.

Recall that $n \geq 3$ and $\max (A, B) \leq \sqrt{n}$. We have, as in the proof of lemma 7 ,

$$
\begin{aligned}
\sum_{(x, y) \in D_{1}} x & \leq \sum_{x=1}^{s}\left(\left[\frac{n}{A x^{2}}\right]+1\right) x \leq \frac{n}{A} \sum_{x=1}^{s} \frac{1}{x}+\sum_{x=1}^{s} x \\
& \leq \frac{n}{A}(\log s+1)+s^{2} \leq \frac{n}{A}\left(\frac{1}{4} \log (n+B)+1\right)+\sqrt{n+B} \\
& \leq \frac{n}{4 A}(\log n+\log 2+4)+\frac{n+B}{\sqrt{n+B}} \leq \frac{n}{4 A} \times 6 \log n+\frac{2 n}{A} \leq 4 \frac{n \log n}{A}
\end{aligned}
$$

b) Now we look for an upper bound for $\sum_{(x, y) \in D_{2}} x$. We have

$$
\sum_{(x, y) \in D_{2}} x=\sum_{y=1}^{[\sqrt{n+B}]} \sum_{\substack{x^{2} y \leq n+B \\ x^{2} y \equiv B(\bmod A)}} x
$$

For a given y, the congruence $x^{2} y \equiv B(\bmod A)$ has at most two solutions $x_{1, y}$ and $x_{2, y}$ satisfying $0<x_{1, y}<A, 0<x_{2, y}<A$ and $x_{1} \neq x_{2}$. As A and B are coprime, the solutions of this congruence are exactly the $x=A r+x_{q, y}(y)$ for some $q \in\{1,2\}$. Therefore

$$
\begin{aligned}
& \sum_{(x, y) \in D_{2}} x \leq \sum_{y=1}^{[\sqrt{n+B}]} \sum_{q=1}^{2} \sum_{\left(A r+x_{q, y}\right)^{2} y \leq n+B}\left(A r+x_{q, y}\right) \\
& \leq 2 A \sum_{y=1}^{[\sqrt{n+B}]}\left[\frac{1}{A} \sqrt{\frac{n+B}{y}}\right] \\
& \sum_{r=0}(r+1)
\end{aligned}
$$

As $n(n+1) \leq 4(n-1)^{2}$ for $n \geq 3$, we obtain

$$
\sum_{(x, y) \in D_{2}} x \leq \frac{4}{A} \sum_{y=1}^{[\sqrt{n+B}]} \frac{n+B}{y} \leq \frac{4 n}{A}(\log n+\log 2+2) \leq 16 \frac{n \log n}{A}
$$

This completes the proof of lemma 8 .

4. Proof of theorem 1

Assume that α and β are linearly dependent over \mathbb{Q}. Then there exist two rational integers λ and μ such that $(\lambda, \mu) \neq(0,0)$ and $\lambda \alpha+\mu \beta \in \mathbb{Q}$. This means that

$$
\begin{equation*}
\sum_{n=1}^{+\infty} \frac{\lambda a(n)+\mu b(n)}{q^{n}} \in \mathbb{Q} \tag{19}
\end{equation*}
$$

We will show that this is impossible by using theorem 2 with

$$
\begin{equation*}
\theta(n)=\lambda a(n)+\mu b(n) \tag{20}
\end{equation*}
$$

In all the proof, k is a natural integer sufficiently large.
For every $i \geq 1$, we denote

$$
\begin{equation*}
t_{i}=\frac{i(i+1)}{2}, r_{i}=t_{i}+1 \tag{21}
\end{equation*}
$$

where t_{i} is the $i^{t h}$ triangular number. We recall for further use that, for every $i \geq 1$,

$$
\begin{equation*}
t_{i+1}-t_{i}=i+1 \tag{22}
\end{equation*}
$$

We denote by C_{1}, C_{2}, \ldots, positive real numbers which may depend on q, λ or μ, but not on k, and we put $\varepsilon=0$ or 1 .

Step 1 : Let $p_{1}, p_{2}, p_{3}, \ldots$ be the series of the successive prime numbers greater than k^{20}. For every prime p, let $\omega=\omega(p)$ be defined in lemma 4. We will use the Chinese Remainder Theorem. First, there exists a natural number η_{k} such that

$$
\begin{cases}\eta_{k}-k+1 \equiv p_{1}^{\omega\left(p_{1}\right)} & \left(\bmod p_{1}^{\omega\left(p_{1}\right)+1}\right) \tag{23}\\ \eta_{k}-k+2 \equiv p_{2}^{\omega\left(p_{2}\right)} p_{3}^{\omega\left(p_{3}\right)} & \left(\bmod p_{2}^{\omega\left(p_{2}\right)+1} p_{3}^{\omega\left(p_{3}\right)+1}\right) \\ \vdots & \vdots \\ \eta_{k}-1 \equiv p_{r_{k-2}}^{\omega\left(p_{r_{k-2}}\right)} \cdots p_{t_{k-1}}^{\omega\left(p_{t_{k-1}}\right)} & \left(\bmod p_{r_{k-2}}^{\omega\left(p_{r_{k-2}}\right)+1} \cdots p_{t_{k-1}}^{\omega\left(p_{t_{k-1}}\right)+1}\right) \\ \eta_{k}+1 \equiv p_{r_{k}}^{\omega\left(p_{r_{k}}\right)} \cdots p_{t_{k+1}}^{\omega\left(p_{t_{k+1}}\right)} & \left(\bmod p_{r_{k}}^{\omega\left(p_{r_{k}}\right)+1} \cdots p_{t_{k+1}}^{\omega\left(p_{t_{k+1}}\right)+1}\right) \\ \eta_{k}+2 \equiv p_{r_{k+1}}^{\omega\left(p_{r_{k+1}}\right)} \cdots p_{t_{k+2}}^{\omega\left(p_{t_{k+2}}\right)} & \left(\bmod p_{r_{k+1}}^{\omega\left(p_{r_{k+1}}\right)+1} \cdots p_{t_{k+2}}^{\omega\left(p_{t_{k+2}}\right)+1}\right) \\ \vdots & \vdots \\ \eta_{k}+k \equiv p_{r_{2 k-1}}^{\omega\left(p_{r_{2 k-1}}\right)} \cdots p_{t_{2 k}}^{\omega\left(p_{t_{2 k}}\right)} & \left(\bmod p_{r_{2 k-1}}^{\omega\left(p_{r_{2 k-1}}\right)+1} \cdots p_{t_{2 k}}^{\omega\left(p_{t_{2 k}}\right)+1}\right)\end{cases}
$$

As the arithmetical functions a and b are multiplicative, we know by lemma 4 and (20) that (11) is satisfied, with n_{k} replaced by η_{k}. Moreover, if we define

$$
\begin{equation*}
A_{k}=\prod_{i=1}^{t_{k-1}} p_{i}^{\omega\left(p_{i}\right)+1} \prod_{i=r_{k}}^{t_{2 k}} p_{i}^{\omega\left(p_{i}\right)+1} \tag{24}
\end{equation*}
$$

we know by the Chinese Remainder Theorem that we can choose η_{k} satisfying

$$
\begin{equation*}
0 \leq \eta_{k} \leq A_{k} \tag{25}
\end{equation*}
$$

Now we look for an upper bound for A_{k}. Let $p_{1}^{\prime}=2, p_{2}^{\prime}=3, p_{3}^{\prime}=5, \ldots$ be the series of all prime numbers. The elementary Chebyshev inequality

$$
\pi(n) \geq n \log 2 / \log n
$$

immediatly yields

$$
\begin{equation*}
p_{n}^{\prime} \leq C_{1} n \log n \tag{26}
\end{equation*}
$$

Therefore, as $p_{i} \geq k^{20}$, we have by lemma 4

$$
\begin{aligned}
A_{k} & \leq \prod_{i=1}^{t_{2 k}}\left(p_{i+k^{20}}^{\prime}\right)^{2 q^{2}+1} \leq \prod_{i=1}^{t_{2 k}}\left[C_{1}\left(i+k^{20}\right) \log \left(i+k^{20}\right)\right]^{2 q^{2}+1} \\
& \leq \prod_{i=1}^{t_{2 k}}\left[2 C_{1} k^{20} \log \left(2 k^{20}\right)\right]^{2 q^{2}+1} \leq\left[2 C_{1} k^{20} \log \left(2 k^{20}\right)\right]^{\left(q^{2}+1\right) k(2 k+1)}
\end{aligned}
$$

Hence, for k sufficiently large, we have

$$
\begin{equation*}
\eta_{k} \leq A_{k} \leq \exp \left(k^{2.5}\right) \tag{27}
\end{equation*}
$$

Step 2 : Put $N_{k}=\left[\frac{2^{k^{10}}}{A_{k}}\right]$. We consider now all the numbers of the form

$$
\begin{equation*}
u_{k, i}=i A_{k}+\eta_{k}, i=1,2, \cdots, N_{k} . \tag{28}
\end{equation*}
$$

It is clear that every $u_{k, i}$ satisfies the system of congruences (23), as η_{k} does. Consequently, we have

$$
\left\{\begin{array}{l}
q\left|\theta\left(u_{k, i}-k+1\right), q^{2}\right| \theta\left(u_{k, i}-k+2\right), \cdots, q^{k-1} \mid \theta\left(u_{k, i}-1\right), \tag{29}\\
q^{k+1}\left|\theta\left(u_{k, i}+1\right), q^{k+2}\right| \theta\left(u_{k, i}+2\right), \cdots, q^{2 k} \mid \theta\left(u_{k, i}+k\right)
\end{array}\right.
$$

Recall that $\varepsilon=0$ or 1 . We define

$$
\begin{equation*}
\mathbb{E}_{k}=\left\{i \in \mathbb{N} / 1 \leq i \leq N_{k} / a\left(u_{k, i}\right)=1+\varepsilon, b\left(u_{k, i}\right)=1+2 \varepsilon\right\} \tag{30}
\end{equation*}
$$

As (27) holds, we can apply lemmas 5 and 6 , and we see that the cardinal of \mathbb{E}_{k} satisfies

$$
\begin{equation*}
\left|\mathbb{E}_{k}\right| \geq\left[\frac{N_{k}}{80}\right] \geq \frac{2^{k^{10}}}{81 A_{k}} \tag{31}
\end{equation*}
$$

Now we look for an upper bound of the sum

$$
\begin{equation*}
S_{k}=\sum_{i \in \mathbb{E}_{k}} \sum_{n=0}^{10 k^{10}}\left|\theta\left(n+u_{k, i}+k+1\right)\right| \tag{32}
\end{equation*}
$$

We clearly have (33):

$$
\begin{aligned}
S_{k} & \leq \sum_{i=1}^{N_{k}} \sum_{n=0}^{10 k^{10}}\left(|\lambda| a\left(n+i A_{k}+\eta_{k}+k+1\right)+|\mu| b\left(n+i A_{k}+\eta_{k}+k+1\right)\right) \\
& \leq \sum_{n=0}^{10 k^{10}} \sum_{i=1}^{N_{k}}\left(|\lambda| a\left(i A_{k}+n+\eta_{k}+k+1\right)+|\mu| b\left(i A_{k}+n+\eta_{k}+k+1\right)\right) .
\end{aligned}
$$

Now we show that A_{k} and $n+\eta_{k}+k+1$ are coprime. Indeed, if not, by (24) it would exist some p_{j} such that $p_{j} \mid n+\eta_{k}+k+1$, with $1 \leq j \leq t_{k-1}$ or $r_{k} \leq j \leq t_{2 k}$. But p_{j} divides $\eta_{k}+k-g$ for some g between 0 and $2 k-1$ and $g \neq k$ by (23). Therefore p_{j} would divide $n+g+1$, which is impossible because $p_{j} \geq k^{20}$ and $n+g+1 \leq 10 k^{10}+2 k$.
Hence A_{k} and $n+\eta_{k}+k+1$ are coprime. By lemmas 7 and 8 we get

$$
\begin{equation*}
S_{k} \leq \sum_{n=0}^{10 k^{10}}\left(4|\lambda| \frac{2^{k^{10}}}{A_{k}}+20 \log 2 \frac{k^{10} 2^{k^{10}}}{A_{k}}|\mu|\right) \leq C_{2} \frac{k^{20} 2^{k^{10}}}{A_{k}} \tag{34}
\end{equation*}
$$

Denote $m_{k}=\min _{i \in \mathbb{E}_{k}}\left(\sum_{n=0}^{10 k^{10}}\left|\theta\left(n+u_{k, i}+k+1\right)\right|\right)$.
By (31), (32) and (34) we have $m_{k} \frac{2^{k^{10}}}{81 A_{k}} \leq C_{2} \frac{k^{20} 2^{k^{10}}}{A_{k}}$.
Therefore $m_{k} \leq k^{21}$ for every k sufficiently large.
Hence there exists $i_{k} \in\left\{1,2, \cdots, N_{k}\right\}$ such that

$$
\begin{equation*}
\sum_{n=0}^{10 k^{10}}\left|\theta\left(n+u_{k, i_{k}}+k+1\right)\right| \leq k^{21} \tag{35}
\end{equation*}
$$

Define $n_{k}=u_{k, i_{k}}$. By (29), (30) and (35), we have

$$
\left\{\begin{array}{l}
q\left|\theta\left(n_{k}-k+1\right), q^{2}\right| \theta\left(n_{k}-k+2\right), \cdots, q^{k-1} \mid \theta\left(n_{k}-1\right) \tag{36}\\
q^{k+1}\left|\theta\left(n_{k}+1\right), q^{k+2}\right| \theta\left(n_{k}+2\right), \cdots, q^{2 k} \mid \theta\left(n_{k}+k\right) \\
\sum_{n=0}^{10 k^{10}}\left|\theta\left(n+n_{k}+k+1\right)\right| \leq k^{21} \\
a\left(n_{k}\right)=1+\varepsilon, b\left(n_{k}\right)=1+2 \varepsilon
\end{array}\right.
$$

Step 3 : We show now that theorem 2 applies with n_{k} defined above. We have only to check that (12) holds, since

$$
n_{k} \geq A_{k} \geq p_{1} \geq k^{20} \geq 2 k
$$

We have by (36)

$$
\begin{aligned}
\sum_{n=0}^{+\infty} \frac{\left|\theta\left(n+n_{k}+k+1\right)\right|}{|q|^{n}} & \leq k^{21}+\sum_{n=10 k^{10}}^{+\infty} \frac{\left|\theta\left(n+n_{k}+k+1\right)\right|}{|q|^{n}} \\
& \leq k^{21}+C_{3} \sum_{n=10 k^{10}}^{+\infty} \frac{\left(n+n_{k}+k+1\right)^{2}}{|q|^{n}}
\end{aligned}
$$

Now $10 k^{10}+n_{k}+k+1 \leq \exp \left(k^{10}\right)$ by (27) and (28). Hence

$$
\sum_{n=0}^{+\infty} \frac{\left|\theta\left(n+n_{k}+k+1\right)\right|}{|q|^{n}} \leq k^{21}+\frac{C_{3}}{|q|^{10 k^{10}}} \sum_{n=0}^{+\infty} \frac{\left(n+\exp \left(k^{10}\right)\right)^{2}}{|q|^{n}} \leq 2 k^{21}
$$

This proves that (12) holds. Theorem 2 applies and

$$
\begin{equation*}
q^{k} \mid \lambda a\left(n_{k}\right)+\mu b\left(n_{k}\right) \tag{37}
\end{equation*}
$$

for every large k. Taking successively $\varepsilon=0$ and $\varepsilon=1$ in (36), we obtain

$$
\left\{\begin{array}{l|l}
q^{k} \mid \lambda+\mu \\
q^{k} \mid 2 \lambda+3 \mu
\end{array}\right.
$$

Hence q^{k} divides λ and μ for every large k, which yields $\lambda=\mu=0$ and proves theorem 1.

References

[1] P. Borwein, On the irrationality of $\sum\left(1 /\left(q^{n}+r\right)\right)$, J. Number Theory 37, $\mathrm{n}^{\circ} 3$, 253-259 (1991).
[2] D. Duverney, Propriétés arithmétiques d'une série liée aux fonctions thêta, Acta Arith. 64, n ${ }^{\circ}$ 2, 175-188 (1993)
[3] D. Duverney, A propos de la série $\sum\left(x^{n} /\left(q^{n}-1\right)\right)$, J. Théor. Nombres Bordx 8, nº 1, 173-181 (1996)
[4] D. Duverney, Propriétés arithmétiques d'un produit infini lié aux fonctions thêta, J. Reine Angew. Math. 477, 1-12 (1996).
[5] D. Duverney, Some arithmetical consequences of Jacobi's triple product identity, Math. Proc. Camb. Philos. Soc. 122, n ${ }^{\circ} 3$, 393-399 (1997).
[6] D. Duverney, Number Theory, An elementary Introduction through Diophantine Problems, World Scientific, 2010.
[7] P. Erdös, On arithmetical properties of Lambert Series, Proc. Nat. Inst. of Sciences of India, 13 (1947), 63-66.
[8] G.H Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, Oxford Science Publications, 1989.
[9] T. Matala-Aho and M. Prévost, Irrationality measures for the series of reciprocals from recurrence sequences, J. Number Theory 96, n ${ }^{\circ} 2$, 275-292 (2002).

