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1 Introduction

This paper is the first of two survey papers devoted to the study of series involving
Fibonacci and Lucas numbers. There has been, up to now, a great deal of works on
this subject, and it seems necessary to summarize and classify it.

To begin with, we observe that series involving Fibonacci and Lucas numbers can
be divided, roughly, into two large classes ; first, the subscript of Fibonacci and
Lucas numbers appear in arithmetic progression ; second, they appear in geometrie
progression,

We give here two classical examples of both cases. For these two exmples, the
sum of the series can be explicitly computed.

Example 1.1. We have

(1.1)

1+V5 .
where <I>= 2 lS the Golden Number.

It seems difficult to find the first mention of this result, which is a direct conse-
quence of the well-known continued fraction expansion of 'If (see for example [15],
Exercise 3.11). But it is undoubtedly very old.

Example 1.2. Lucas found in 1878 [27] that

~_1 = 7-V5.
~F2n 2
n=O

This result can be easily obtained by taking x = 'If in de Morgan's series (cf. [9])

x---,
1-x

which is readily deduced from the identity

x X x2

---
1- x 1- x2·

1

(1.2)

(1.3)

(1.4)



There are three natural questions about senes involving Fibonacci and Lucas
numbers.
First question: Given a series, can we compute its sum? That means, can we
express this series in a closed form as in Examples 1.1 and 1'.2, or alternatively,
can we express it by using classical functions? These will include, as will see later,
q-hypergeometric functions, Lambert series, elliptic integrals, and theta functions.
Second question: Given a series, can we study its arithmetical properties? First
of all, can we prove this series to be irrational? For example, we know that 2:::;=0 }.n
is irrational (cf. [2],[10],[13]).
Third question: Given a series, can we prove it to be transcendental? This last
problem is the most difficult. However, a number of results have been obtained
recently on the subject. For example, it is known that 2:::;-0 ~ is transcendental

- rZn+l

(cf. [17], but it is not known if 2:::;=0 A is transcendental!)

ln this first paper, we will give a survey of the answers to the first question. The
other paper, with the same title but numbered II, will be devoted to the answers to
the second and third questions.

2 Computation in closed form when the sub-
scripts are in arithmetic progression

2.1 Products in the denominators

A very elementary result is

(2.1)

Althought this series looks like (1.1), its summation is quite different and much more
simple. Observe that

1 (1 1) 1
FnFn+2 = Fn+l Fn - Fn+2 = FnFn+l

so that (2.1) is a telescoping series.
Now let us define for every k 2: 0

1 1

(2.2)

00 1
Tk=LFF l

n=l n n+k
(2.3)
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ln paticular,

00 1
s; = L If'

n==1 n

S* = ~ (-Ir
o Z:: F '

n==1 n

00 1
SI =L Fe Fe '

n==1 n ri-l-I

Brousseau [7] and Rabinowitz [32] proved that

1 k 1
T2k=-L--'

F2k n==1F2n-1

(2.4)

T* = ~ (kS* ~ Fn-l)k F 1+~ F .
k n==1 n

(2.5)

Shortly after the result of Brousseau, Carlitz [11] wrote Sk and Sk (k 2:: 1) as in the

following : Letting (F)n = FIF2 ... r; (F)o = 1, and { ~ } = (F);~~t_j E Z,

( )k 2k 4k {} j n_ -1 1 ljU-e) 4k E
S4k - SO-(F) IIL2j-1 - (F) I: (-1)2 . I:If'

4k j==l 4k j==1 J n=l n
(2.6)

1 4k { 4k } ( j n)_ ljU-e) . E
S4k+l - (F) I: (-1)2 J' T4k+l-j - L Fe F .'

4k j=O n=l n n+4k+l-J
(2.7)

_ * (_l)k 2k+l 1 4k+2 ljU-e) {4k + 2} j (-Er
S4k+2 - s; (F) IIL2j-1 - (F) L (-1)2 . L7:' (2.8)

4k+2 j==l 4k+2 j=l J n==l n

4k+2 {} ( j ()n)_ 1 liU-e) 4k + 2 * -E
S4k+3 - (F) I: (-1)2 . T4k+3-j - L F Fe .' (2.9)

4k+2 j=O J n=l n n+4k+3-J

where E = 1 and [x] is the greatest integer not exceeding x. Futhermore,
S~k' S~k+l? S~k+2' and S~k+3 are given by (2.6), (2.7), (2.8) and (2.9) with S~ in
place of So, T:k+1-j in place of T4k+l-j, +S« in place of S~, and T4k+3-j in place of
T:k+3-j' respectively, and E = -1 in any case. These formulas imply that Sk,S;:,Tk,
and Ti: (k 2:: 2) can be written as linear combinat ions over <Q of 1 and one of
s; SI, S~, and S~ = w.
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Bruckman and Good [9] generalized the formula (1.1) by proving that, if r ~ 1 is
an integer,

(2.10)

The Sums So and SI have interesting expresions. Gould [19] proved that, for any
integer r ~ 1,

(2.11)

The last series converges very rapidly, if r is larger. André-Jeannin [3] used the
following formula to epress SI in terms of Lambert series (see (3.12) in section 3.2):

1
<1> (2.12)

2.2 Sums in the denominators

ln [5], Backstrom proved that, for any integer r ~ 1,

<Xl 1

~ -P-2n-+-l-+-P-2r---l

(2r - 1)J5
2L2r-1

(2.13)

1
2L 2r

(r even)

1
10Fr

2

(2.14)

(r odd)

For example, if r = 1,

<Xl 1 J5
L F2n+1 + 1 = 2'
n=O

(2.15)

Backstrom's proofs of these results rely heavily on the properties of Fibonacci and
Lucas numbers. Popov gave in [31] sorne generalizations of these formulas with
simpler proofs. Almkvist [1] remarked that the series used by Backstrom are in fact
telescoping series. For the proof of (2.13) for example, he observes that

J5 (1 1)
F2n+1 + F2r-1 = L2r-1 1+ qn+r+l - 1+ qn-r '

1 1
q = <1>2'
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Similar results were obtained by André-Jeannin in [4]. If r ~ 1 is an integer

(2.16)

00 1 e ( 1)I: =-- r-l+ 2+1'n=O L2n + éV5F2r-1 L2r-1 1+ éq>- r
(2.17)

where e = 1. For example, if r = 1,

00 1I: = 1,
n=O F2n+1 + 3/V5

00 1 1I: =-.
n=O L2n + V5 q>

Recently Zhao [33] proved that the formulas (2.16) and (2.17) hold also for e = -l.
These identities result from the use of telescoping series.

3 Expression by means of classical functions when
the subscripts are in arithmetic progression

3.1 Use of theta functions

ln [5], Backstrom gave the estimate

00 1 1 1
~ L2n + 2 ~ 8" + 4log q> (3.1)

and raised the problem to compute this sumo Almkvist [1] proved that

00 1

I:L2n +2 =
n=O

This series converges extremely rapidly. If we introduce the Jacobi's theta fucntions

B3(q) - 1 + 2 2::=1«',
B(q) 1 + 2 2:~=1(_ltqn

2
, (3.3)

B2(q) 2ql/42:00 qn(n-l)n=l ,
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we see that (3.2) gives an expression of the series 2::~=oL2~+2 by means of the nu m-

bers B(e-1t"2jlog1» and B'(e-1t"2jlog1», where 'l' denotes the derivation q ~. Almkvist's

proof of (3.2) consists in using a classical formula for theta functioris with suitably
specialized variables. By the same method André-Jeannin [4] proved the expression

00 1 V5 1f2V5 B; (e-1t"2jlog 1»

~ F2n+1 + 2/ V5 = 4log <I> - (log <p)2 B3( e-1t"2 /log 1>)"

Zhao [33] obtained similar results for the series 2::~=oF
Zn

+
1

~2jv'5 and also for
,\",00 1
L.m=o Lzn-2·

The odd and even parts of 2::~=1}.n and 2::~=1L ' respectively, can be expressed
in terms of Jacobi's theta functions;

(3.4)

(3.5)

The first formula was given by Landau [26]. Catalan [12] wrote the second series in
terms of the complete elliptic integral of the first kind, which is equivalent to (3.5)

ln 1977, Bruckman [8] obtained closed form expressions for certain series involving
hyperbolic secants and cosecants in terms of complete elliptic integrals of the first
and second kind. Specializing the modulus, an implicit parameter of the integrals,
and using the relations

{

1 V5- = - cosech 2nÀ,
F2n 2
1 1

- - - sech 2nÀL2n - 2 '

1 V5-- = - sech (2n + 1)À,
F2n+1 2

1 1
-- = - cosech (2n + 1)À,
L2n+l 2

with À = log <P,he obtained closed form expressions for reciprocal sums of Fibonacci
and Lucas numbers including those in (3.6) with s = 1. He remarked that the series

00

L cosech nx
n=l

cannot be evaluated by elliptic functions and so the reciprocal sums

00 1
~ and
~F2n
n=l

00 1
L-·
n=l L2n-1
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Shortly later Zucker [34] proved that for any integers s 2: 1 the reciprocal sums

00 1

L F. 2s'
n=l n

00 1

~ F2n_1
s
'

00 1

L L 2s'
n=l n

00 1

LLS'
n=l 2n

(3.6)

among others, can be expressed as rational functions of Jacobi's the ta functions
with ration al coefficients. ln the above-mentioned paper [1], Almkvist collected
sorne formulas connecting, as in (3.4) and (3.5), reciprocal sums of Fibonacci and
Lucas numbers and Jacobi's theta functions. The proofs in [8], [34], and [1] are
based on classical identities in elliptic function theory mostly due to Jacobi.

The catalogue of formulas given by Almkvist in [1] suggested us the possibility of
proving the transcendence of such sums by using Nesterenko's theorem on modular
functions [17]. ln the last paper we gave elementary proofs of sorne formulas by
using Jacobi's triple product identity, for example

(3.7)

We remark that

as proved by Jennings in [24].

3.2 Expressions by means of Lambert series

Lambert series are series of the form
00 n

f(x) ="" anx .
Ll-xn
n=l

(3.8)

(See [15], [20], for intance.) The simplest Lambert series is

00 n

L(x) ="" x .L l-xn
n=l

(3.9)

It has been known for a long time that

(3.10)

00 1 1 1 1L - = -L(--) + 2L(2) - L(4)'L2n-1 <I> <I> <I>
n=l

(3.11)
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André-Jeannin [3] proved that

(3.12)

00 1 2[ 1 1] 1:L L L = ~ L( cp2) - 2L( cp8) - ~ .
n=l n n+1 V 5 . v 5cp

(3.13)

Sorne generalization of these formulas can be found in Melham and Shannon [29].
A recent paper of Melham [28) gives expressions of sorne series involving L(x). For
example

(3.14)

Another Lambert series is
00 n

H(x) = '" nx .L....t 1- x" .
n=l

(3.15)

This one is connected with the theory of elliptic functions and is used in the proof
of sorne formulas. For example, we have

00 00 00 00

H(x) :Lnxn:Lxnk= :L:Lnxn(k+l)
n=l k=O k=O n=l
00 00 00 xk

'" xk '" nxk(n-l) = '" __ -::-f;;t ~ f;;t (1 - xk)2

Therefore, with x = - ;;2

(3.16)

This formula leads to an elementary proof of the irrationality of the series in the
left-hand side of (3.16) in [14] and, by connecting it to modular functions, to a pro of
of its transcendence in [17]

ln [23]Horadam gave an interesting historical survey on the subjects of this section
and the preceeding one.
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3.3 Use of the q-exponential function

Let q E te with Iql > 1. The q-exponential function lS the most simple q-
hypergeometric function (cf. [18]). It is defined by

(3.17)

It is a q-analogue of the ordinary exponential function in the sense that

As a special case of the q-binomial theorem [18], we have

Eq(x) = fi (1 - ~) (x Ete).
n=1 q

(3.18)

An elementary pro of of (3.18) can be obtained by noting that the q-exponential
function satisfies the functional equation

(3.19)

If we take the logarithmic derivative of (3.18), we get

E~(-x) 00 1
E (-x) = I: qk - X

q k=l

(3.20)

But it is clear that

(3.21 )

Denote by Lq the q-Iogarithmic function defined by ,

00 n

Logq(x) = ""' x (Ixl < Iql),~qn-1
n=l

(3.22)

which is a q-analogue of the ordinary logarithmic function, because

lim(q - l)Logq(x) = -log(l - x).
q-t1

By using (3.20) and (3.21), we see that

E~(-x)
Logq(X) = x Eq( -x) (Ixl < Iq/)· (3.23)

9



This formula enables us to express the sum of the reciprocals of Fibonacci numbers
in terms of a q-exponential function. Indeed, if we take q = _<1>2,we have

(3.24)

(3.25)

ln particular, the numbers So,S~, and SI defined in section 2.1 can be written as

~ ~ = (<1>_ w) ~ (_<1»n = (<1>_ w)<1>Eq'(<1»
L F L qn - 1 E (<1»,n=l n n=1 q

(3.26)

(3.27)

and

f 1 = 2(<1>- w) f (:lr - ~= 2(<1>_ w) Eq(l)' 1 (3.28)
n=l FnFn+l n=1 q - 1 <1> Eq(l) - <1>'

by using (2.12) or by direct calculation. The formula (3.26) seems to appear first
in [10]. The first named author of the present paper used it in [13] to prove the
irrationality of the sum 2:::'=1 ln .

4 Computation in closed form when the sub-
scripts are in geometric progression

4.1 Sorne known results

The formula (1.2) of Lucas has been rediscovered in many papers. For example,
Hoggatt and Bicknel [21] gave eleven different methods for finding the value of the
sum (1.2). Shortly later, they proved in [22] a more general formula

00 1 1 <1>2+ 1
~ Fk2n = Fk + <1>(<1>2k- 1)' (4.1)

which is also an easy consequence of formula (1.3).
Bruckman and Good [9] obtained symmetric formulas

1

la



using a generalized de Morgan 's series for an integer d 2:: 2

00 Xdn (1 _ X(d-l)dn
) X

~ (1 - xdn)(l - xdn+1
) = 1 - x

with d = 3 and x = (W/~)k.
Other results of a similar kind are

(4.2)

(4.3)

(4.4)

(see for example [16J and [6], respectively). It is interesting to remark that (1.2),
(4.3), (4.4) result, respectively, from sums of series of rational functions

(4.5)

(4.6)

(4.7)

with x = w. We note that Jennings [25J proved (4.6) and deduced

which is equivalent to (4.3), since L2n2 = L2n+l + 2. Another identity of the same
type is

(4.8)

which however gives a less interesting formula when applied to x
identities are listed and proved in [16], Theorem 2.7.

w. These
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4.2 A general identity

Our two questions are: Are these identities (4.2), (4.5)-(4.8) connected? Is there a
way for obtaining themall together?

On what concerns the first question, it is clear that (4.6) cornes from (4.8) by
term-by-terrn differentiation. Also, (4.7) can be obtained from (4.8); replace first x
by px with p = e21ri/3 then replace x by px, and add. Clearly, (4.2) with d = 2 yields
(4.5). But at first sight, it seems difficults to connect (4.5) and (4.8). As for the
second questionm the following formula (4.11) enables us to obtain (4.5), and (4.8)
together and to give new Fibonacci identities. Furthermore, the formula (4.2) and
also (4.11) can be deduced form a general identity (4.12).

Theorem 4.1. Let c, dE Z, d ~ 2, c =1= o. Let P, Q E C[x) satisfying P(O) = Q(O) =
1 and

P(xd) = P(x)Q(x). (4.9)

Then for [z] < 1

(4.10)

Pro of. If c==L, the left-hand side is

by (4.9). Let c =1= 1. Then we have using (4.9)

1fi P(xd"),;' = fi [P(X) gQ(Xé)] " = P(x),o. TIgQ(xé)"

with
00 n-l 1 00 00 k..L 00 k _I_IIIIQ(xdk) en = II II Q(Xd) en = IIQ(Xd ) cl«C-1).

n=l k=O k=O n=k+ 1 k=O

Henee we get
00 1 00 1II p(Xdn)cn = P(X)C~1 IIQ(Xdn)Cn(C-1)

n=O n=O

and (4.10) follows.
If we take the logarithmic derivative of (4.10) and multiply by x we immediately

obtain
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Corollary 4.1. Let c, d, P, Q be as in Theorem 4.1. Then for every Ixl < 1

(4.11)

This formula appears as a generalization of old result of Jacobi (see for example
[30], 164 p.30). ln an earlier version of this paper, Taka-aki Tanaka remarked that,
if a E CCX and G(x),H(x) E CC[x]with G(O) = 0 and H(O) = 1,

~ ( n G(xd
n

) _ n+l G(X
dn

+
1

)) = G(x) (4.12)
~ a H(xdn) a H(xdn+1

) H(x)'

and (4.11) can be obtained by putting a = djc,G(x) = xP'(x),H(x) = P(x).

4.3 Examples

Example 4.1. Take d = c = 2, P(x) = 1 - x, and Q(x) = 1 + x. Replacing in
(4.11) yields (4.2).

Example 4.2. Take an = 1, b.; = d"; f(x) = x, and g(x) = 1 - x. Replacing in
(4.12) yields (4.2).

Example 4.3. Take d = 2, a = 1, P(x) = 1 - x, and Q(x) = 1 + x. Replacing in
(4.11) yields (4.8)

Example 4.4. Take d = 3, c = 1, P(x) = 1 - x, and Q(x) = x2 + X + 1. Replacing
in (4.11) yields

(4.13)

We can obtain more symmetric expressions, if we replace x by -x in (4.13)

<Xl 3nx3n(2x37l. -1) x
L X2·3n - x3'" + 1 = - 1+ x
n=O

(4.14)

and substract (4.14) from (4.13); we get

00 3nx3n (1 _ X2'3n
) x

L x4·3n + X2·3'" + 1 = 1 - x2 .
n=O

(4.15)

We do not know if this is a known series. From it we can get another series. Observe
that i3n = (-lri and replace x by ix in (4.15); we obtain

00 (-3rx37l. (1+ X2'3n
) XL X4·3n _ X2·3n + 1 = 1+ X2 •

n=O

(4.16)
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As a numerical application, we take x = 1/<1>in (4.15) and (4.16). Then we get

(4.17)

(4.18)

Example 4.5. Take d = c = 2, P(x) = 1+x+x2, and Q(x) = 1-x+x2• Replacing
in (4.11) yields

Putting x = $, we have

and so
<1>- $ ~ ..;5F2n 1 <1>+ 2

1 + <1>2+..l... + ~ 1 + L2n+l - <1>. 1 + <1>+ :;;;-.1 •

. <[>2 n=l ~

We finally obtain

~ F2n 1
~ L2n+l + 1= 4..;5'

Example 4.6. Take d = 3, c = 2, P(x) = 1 - x, and Q(x) = 1 + x + x2• Replacing
in (4.11) yields

(4.19)

2x
1-x

As in Example 4.4, this can be made more symmetric by replacing x by -x and
substracting; we obtain

2x
1- x2'

(4.20)

Replacing x by ix, we also get

2x
1+ x2'

(4.21 )
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Finally, if we replace x by i in (4.20) and (4.21), we obtain two beautiful series
involving Fibonacci and Lucas sequences

(4.22)

(4.23)

As far as we know, the series (4.17), (4.18), (4.19), (4.22), and (4.23) are new. It is
clear that many series involving Fibonacci and Lucas numbers could be computed
from (4.11) and also from (4.12), but we do not want to take up too much of the
reader's time!
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