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Abstract

In this paper, we refine the method of Chowla and@srdn the irrationality of Lambert series and
study a necessary condition for the infinite seeé9(n)/q™ to be a rational number, whetgis an
integer with|g| > 1 and@ is an arithmetic function with suitable divisibility and growth conditions.

As applications of our main theorem, we give linear independence results for various kinds of Lambert
series.
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1 Introduction and main results

The story of what we call “Chowla—Eéd method” in the title of this paper begins with a result of Chowla
[2] dating back to 1947. In [2], Chowla proved that the number

— (D)™ 1 r(n)
Zﬂn—l_l _ZZ tn
n=1 n=1

is irrational for any integet > 5, wherer(n) is the number of representationsroés a sum of two squares.

He showed that the bageepresentation of the infinite series in the right-hand side of (1.1) contains arbi-
trarily long strings of0’s without being identically zero from some point on, and is therefore not ultimately
periodic. Chowla also conjectures that for aagional numbert with |¢| > 1 the numbers (1.1) and

(1.1)

=1 B . d(n)
Ztn_l_z tn (1.2)
n=1 n=1
would be irrational, wheré(n) is the classical divisor function defined by
dn):=>_1 n>1 (1.3)

dn

In 1948, Erds [7] extended Chowla’s result by showing that both numbers (1.1) and (1.2) are irrational for
any integer > 1. Erdds’s proof consists in using divisibility properties of the arithmetic functigmg and
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d(n), and recently his method has been applied to various kinds of Lambert series; see [6], [10], [11], [12],
[14]. Erdds himself published in 1969 a second paper [8] on the irrationality of Lambert series by using
similar but slightly different ideas. A striking result in [8] is to establish the irrationality of the number

1
Z tp2_17

p:prime
wheret > 2 is an integer and the sum is taken over all prime numbers.

Remark 1.1. The above Chowla’s conjecture is true for the number (1.1). Even better, it is known that
this number is transcendental for every algebraic number t Wijtb- 1. This follows from the well-known
identity

d()? =1+ r(n)a”, |z <1,
n=1
whered(z) is the theta function defined y(x) := 1+ 2% 7, 2", and the fact that the valug(a) is
transcendental for any algebraic numberwith 0 < |a| < 1 (cf. [13, Corollary 4.7], see also [1], [5]).
Besides, an elementary proof of the irrationality of the number (1.1) for any integeér > 1) has been
givenin [3]. In contrast, the conjecture for the number (1.2) is still open. One only knows by [4, Theorem 2]
that the number (1.2) is irrational for any nonzero rational number r/s (r, s € Z) satisfying

logls| 1 3
<-(1l=-=].
log|r| =3 2

Note that we are still unaware of transcendence for thed&rdorwein constarit_,~ , 1/(2" — 1).

The purpose of this paper is to refine the method of Chowladdathd give linear independence results for
certain series. Lef denote the set of all increasing sequenkes {ej, ea,...,e,, ...} Of positive integers
greater than one which satisfy the following two conditions;

ged(ei,e) =1 (i #7),

and there exists a constant> 1 such that

en < nt (1.4)
holds for any large:. For example, the sequence of all prime numbers belongs to tifg sitce thenth
prime numbep,, is asymptotic ta: log n. Throughout this paper, lgtbe an integer withq| > 1.

Theorem 1.1. Assume that the arithmetic functién Z-., — Z satisfies the following two conditions;
(Hp) There exists a sequenée:= {e, },,>1 € £ and a positive integet such that the following property
holds: if the integern has the form

n=(ejey, -e,) N with ged(ej €4y - -6, N) =1, (1.5)
for large distinct integers;, , e;,, . . ., e;,, in E, thenf(n) is divisible byg™.

(H2) There exists a positive constansuch that

> [6(ai +b)| < n(2+logn)’,  n>max{a,b},
=0
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holds uniformly for all coprime positive integer paiisb.
Assume moreover that the infinite series

flg) =3 2 (L.6)
n=1 q
is rational. Then for any positive integer pait, B, there exist infinitely many positive integersuch that
f(n) =0, 1.7)
{ n=DB (mod A). (1.8)

As an application of Theorem 1.1, we obtain the following Theorem 1.2. In what follows, ded ¢ be
positive integers.

Theorem 1.2. Assume that all the arithmetic functiofis, 6., . . ., 6, satisfy the two conditiongH, ) for a
fixedE € £ and a fixed positive integer, and (Hs) in Theorem 1.1. If thé/ + 1 numbers
— 0;(n) . .
1, Zl o (i=1,2,...,0, j=1,2,...,h) (1.9)
are linearly dependent ovdp, then there exist integes, &, . .., &, not all zero, such that the following

property holds: For any positive integer pait, B with gcd(A, h!) = 1, there exist infinitely many positive
integersn such that
{ §101(n) + &202(n) + - -+ + &b(n) = 0,
n=B (mod A).

Note that Theorem 1.2 with= 1 shows that thé& - 1 numbers

1, i 0(n) i 9(27”;)’ i 9(}:1)

n )
n=1 q n=1 q q

(1.10)

are linearly independent ové€r for any# such tha#(n) does not vanish for large and satisfies the condi-
tions(H,) and(Hy).

Corollary 1.1. Letd(n) be the divisor function defined §%.3) and let{a,},>1 be a sequence of nonzero
integers satisfyingog |a,,| = O(loglogn). Then for every integei > 1 the numbers

. d(n)an =, d(n)an 2. d(n)ay

n=1 n=1 n=1
are linearly independent ovép.
Corollary 1.1 generalizes a result of J. Vandehey [14, Theorem 1.2], who proved the irrationality of the
numberd_> ., d(n)b,/q" for a bounded sequence of nonzero intedérs,,>1.

ForE := {e,}n>1 € £ ands € Z>y U {0}, we define

Fyi=FyE) = {f1, far s frr...} (1.11)

as the increasing sequence of all integers of the firre: [, e;"*, where the product is taken over finitely
many values and the integers:; with 0 < m; < s (resp.0 < m,if s := 00). Note thatl € F; for any
sequencé’ € £. LetP € £ be the sequence of all prime numbers. Then, for example, the sequexies

F;(P), Fx(P) consist of all squarefree, cubefree, and positive integers, respectively. Now Theorem 1.2
gives the following linear independence results for certain Lambert series.
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Corollary 1.2. LetE € & be given andF be defined in (1.11) for a fixede Z>2 U {oo}. Letq (|g] > 1)
be an integer satisfyiny|L < s, whereL :=lcm(1,2,...,¢). Then the numbers

1 . .
1, > pr (i=1,2,...,0, j=1,2,...,h) (1.12)
neFs

are linearly independent ové). In particular, if s := oo, then the numbers (1.12) are linearly independent
overQ for any integerg (|¢| > 1). The same holds for the numbers

1
1, > — (i=1,2,...,0, j=1,2,...,h).
nEqujn +1

We give some examples of Corollary 1.2.

Example 1.1. Letu(n) be the Mbbius function. By puttings := F5>(IP) and/ = 1, we see that the numbers
oo oo oo
|p(n)] |(n))| |p(n)]
1, ZQ"—17 22211_1’ T Zghn_l
n=1 n=1 n=1

are linearly independent ove). It is intriguing to compare this result with the fact that the number
oo p(n)/(2™ — 1) = 1/2is arational number.

Example 1.2. Let F; and E5 be the sequences of prime numbers congruerit meodulo4 and of the
squares of prime numbers congruenttonodulo4, respectively. Thel := {2} U F; U E, belongs to

€ and F, := F(F) consists of all positive integeks, (n > 1) which can be expressed as a sum of two
squares. Then the numbers

[e.e]

1 , .
1, qu%_l (i=1,2,....0, j=1,2,....h)

n=1
are linearly independent ovép for any integerg (|g| > 1).

Example 1.3.Let N > 1 be an integer andZ € £ be the sequence of prime numbers coprim@&’torhen
F := F(F) consists of all positive integers coprimeg and the numbers

o0

1 , .
1, > e (i=1,2,....0, j=1,2,...,h) (1.13)

n=1
(n,N)=1

are linearly independent ovép for any integerg (|g| > 1).

The second author and F. Luca [10], [11] gave linear independence results for some subsets of the numbers
(1.13) by using a result on primes in arithmetic progression with large moduldstnadd Graham conjecture

in[9, p. 62] that the numbey_;2 , 1/(2" — 1) is irrational for any increasing sequence of positive integers
{nx}x>1. Corollary 1.2 gives irrationality of the numbe}ys, . , 1/(2" — 1) for a large variety of the sets

A, and support for their conjecture.

The structure of this paper is as follows. In Section 2, we give the proof of our main Theorem 1.1 based
on elementary arguments used in the papers of Chowla [2] aribEFdl Theorem 1.2 will be proved in
Section 3. Section 4 is devoted to the proofs of Corollary 1.1 and 1.2.
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2 Proof of Theorem 1.1

Let A andB be any positive integers ardn) be the arithmetic function satisfying the two conditidii, )
and(Hs) in Theorem 1.1. LeE := {e, },>1 € £ and~y be a positive integer given in the conditi¢f ).
In what follows, letk be a positive integer sufficiently large. L&t := {egs 1, €x3.90,...,€x0} andp; be
as the smallest prime divisor ef (recall thate; > 2 by definition). Since the integees’s are pairwise
coprime, the sef), contains at most® — 2 numberse; such thatl < p; < k%. Hence, dividing the sef,
into thek% — 1 subsets

{ejk3+17 CikB342y -+ e(j+1)k3}a J=L12..., k6 -1,
we find that there exists an integgrwith 1 < j, < k% — 1 such that
p; > kO (2.1)

holds for the consecutivi® integersj = jpk® + 1,..., (jr + 1)k3. We fix the least such integegf and
define

Lz’ = Lz(k’) = ejkk3+2k(i_1)+1 e ejkk:3+2ki7 1= 17 2, ceey 2k. (22)
Consider the system of simultaneous congruences
X-m =L}, (mod L,,"*1), m=1,2,...k,
X =B (mod A), (2.3)
X+m =L}, (mod L]")), m=1,2,...k
where by (2.1) the integerd, L1, Lo, . . ., Lo, are pairwise coprime for large. Hence, by the Chinese

Remainder Theorem, there exists a unique integer soliXfios 7, of (2.3) satisfyingAH, < nx < 2AHj,,
where

2k 4K
+1 +1
Hy, = HLZ = H‘f}kkm' (2.4)
=1 =1
Sincej, > 1, we obtain from the assumption (1.4) that for some congtastl
4k? 4k?
H, < H (jkk??’ _H-)(wl)u < H(kg +4k2)(7+1)u < k40('y+1)yk2’
=1 =1
so that ,
AHy, < mp < 2AH,;, < 28 (2.5)
Let M, := 2" and
Ui = 1AH, + ng, 1=0,1,..., My. (26)

We observe that the two integeff, andn, + m are coprime for each of the integers = 0 andm =
E+1,k+2,...,2k°% Otherwise, there exists a common prime fagtaf H; andn, + m. ThenH, is
divisible by p and so is one of the;’s for j.k® + 1 < i < j.k® + 4k2, which impliesp > k5 by (2.1).
Moreover,n; + m’ is also divisible byp for somem’ (1 < |m/| < k) by the congruences (2.3). Hence,
m — m' is divisible byp, sincep is a prime factor ofy;, + m. Since0 < |m — m/| < 2k° + k, we have

p < 2k + k, which is impossible for largé. Let

2k

p = 10(upa)| + Y 0wk +m)|,  i=0,1,..., My,
m=k-+1

5
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andr, be the minimum of thé//, integersuy o, ft 1, - - - » ik, 11, - Then we have by the conditiqits)
Mj, 2k5 My,
(My + V) <Y |0GAH, + )|+ > > |0GAH, + ng +m))|
=0 m=k—+1 =0
AM, 2k5  AM;,
< 0GHE+m)+ D> D 10GH +mx +m)
=0 m=k+1 =0

< 2k5 AM;,(2 + log AM,)Y,
wherev is a positive constant given in the conditipH>), so that
e < kTS, (2.7)
sinceM}, < ekt Let i, be the least integer such that; = 7, and
Ny 1= Uki, = U AHE + 1y (2.8)

By (2.4) we havey, > n, > AHy, > 248 |t follows from (2.7) and (2.8) that

2K
ST 100 +m)| <7 <EVTEj0(n)] < 7 < B, (2.9)
m=k-+1

Now we complete the proof of Theorem 1.1 by showing that the integersn,, satisfy the properties (1.7)
and (1.8) for any largé. The property (1.8) is clear, sineg, = B (mod A) holds for everyk. We prove
thatd(ny) = 0 for any largek. Clearly, X := ny is a solution of the system of simultaneous congruences
(2.3), so that each integey, + m (1 < |m| < k) has the forn(1.5) for large distinct2k integerse; given

in (2.2). Hence, by the conditiof¥l,) the integer®(n;, + m) are divisible byg?* for all integersm with

1 < |m| < k, and the infinite series (1.6) is written as

np—k—1 nE—1 ng+k 00
0(n) 0(n) | 0(n) 0(n) 0(n)
f(Q) = qn + Z qn + an + Z qn + Z qn’
n=1 n=ni—k n=ng+1 n=ng+k+1
a O(n
e énf Ve (2.10)
whereqy, is a rational integer and
o f(n)
Vi = Z .
n=ng+k+1 q
By (2.5) and (2.6) we have
ng < MyAHy +my, < 280 4ok < 92k (2.11)

Moreover, by the conditiofiH,) with « = b = 1, we get

10(n)| < n(2+1logn)” < n? (2.12)
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for largen. Hence, by (2.9), (2.11), and (2.12)

nk+2k5

0(n)]| - 10(n)|
Vil < Z g + Z lq|
n=nj+k+1 n=ng+2k5+1
2k5 o)
1 1 (ng, + 2K° + m)?
< |q|PetF Z 16(ny, +m)| + N+ 2k5 Z lq|
q m=k+1 |C]| m=1 q
LAv+6 16ck:1024k4
< |q‘n;€+k ‘q‘nk—&-?kf’ ’
wherec := >"°° | n?/|q|™. Thus, we obtain
lim |¢"*Vg| =0, (2.13)
k—oco

since|q| > 1. Now we use the assumption thélg) is a rational number. Then there exist rational integers
aandg (8 > 0) such that3 f(q) + o = 0. After multiplication byq™+—*, we can write by (2.10)

_ 0(n —_—
I, = Bay + ag™F = —5(qkk) — B V. (2.14)

Multiplying (2.14) byg* yields
T = Bard® + aq™ + 50(ng) = —Bq"™ V.. (2.15)

Itis clear thatl;, andJ are rational integers. By (2.9) we have

k4u+6 ﬂ
|2k | §5W+W|Q"Wk|, k| < Blg"* Vi,

and hence by (2.13)
lim || = lim |J;| = 0.
k—o00 k—o0

This implies thatl;, = J, = 0 for every largek, sincel;, andJ; are rational integers. Therefore by (2.14)

and (2.15) we obtain .
== —_— —_ k ==
H(TLk) = 5 (Jk q Ik> 0

for every largek, which is (1.7) as desired. The proof of Theorem 1.1 is completed.

3 Proof of Theorem 1.2

Suppose that the numbers (1.9) are linearly dependent@veamely, there exisf; ; € Z (1 <i < (,1 <
j < h), not all zero, such that

{ h ooeln 00 O(n
S>> oy o

n
i=1j=1  n=1 =1 4

is a rational number, where

J4 h
@(n) = Z mesi’j(n) (31)
=1 j=1
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e (/)
v 0in/d if n is divisible by,
5i3(n) = { 0 Otherwise (3.2)
Letr (1 <r < h) be the least integer such th@t. # 0 for somei. Let A and B be any positive integers
with (A,h!) = 1. In what follows, we prove Theorem 1.2 by showing that there exist infinitely many
positive multiplesV of r such that

{ 51,7«91(]\7/7“) + 5277«92(]\7/7") 4+ -+ fgﬂﬂge(N/T) =0, (33)
N/r=B (mod A). (3.4)

We apply Theorem 1.1 with := ©. To do this, we confirm tha® satisfies the conditiondd;) and(H>)

in Theorem 1.1. By the assumption on th&s, there exists a sequenéee £ and a positive integey such
that the conditior{ H,) is satisfied for alb;’s. Let L := lcm(1,2,...,h) andd be the least positive integer
such thagced(eg, L) = 1 for everye;, > §. Assume that the integerhas the forrm = (e;,e;, - - - €, )N
with ged(e;,, N) = 1, wheree;,, e;,, ..., €;,, > 6 are distinct integers i, If n is not divisible by,
thens; j(n) = 0. Otherwise, noting thagcd(e;,,j) = 1, we haven/j = (e e, - €5, )7 (IN/j) with
ged(e;,, N/j) = 1. Then, by the conditioriH;) for 6;'s, each intege#;(n/j) is divisible by¢™, and
so iss; j(n) by (3.2). Thus, in any case, j(n) is divisible by ¢™, and hence we find by (3.1) thét
satisfies(H1). Next we observéH,) for ©. Leta andb be coprime positive integers. Suppose that the
integerak + b is divisible byj. Then there exists a unique intedgrin the ranged < k; < j such that
k = k; (modj), since the integers and; are coprime because so arandb. Then forn > max{a, b} we
obtain by the conditioriH5)

n

n Ln/j] :
k+kj)+b
S Jsiglak + ) = 3 @-(a"'.*b)\g S e, <“U k) + )\
k=0 k=0 J k=0 J
Jlak+b
2n
ak; +0b
<> 16 <ak‘—|— - )’
k=0 J
< 2n(2 + log 2n)™° (3.5)

for some positive constamty depending o;’s, where we used at the final inequality that the two integers
a and(ak; + b)/;j are coprime and

ki +b
max{a,a]+ }<a+b§2n.
J

Thus, using (3.1), (3.2), and (3.5), we obtain

n

Y4
> 1Ok +b)| <>
i=1

h n
|
k=0 =

Z & jl Z |si j(ak 4+ b)| < 2h€En(2 +log2n)"° < n(2+ logn)”

j=r k=0

for n > max{a, b}, wherev := 2uy + 2hl§ and§ := max{|{; ;| : 1 < i < ¢, r < j < h}. Hence© also
satisfieg Ha).

LetC (0 < C < A) be an integer such that+ h!C' = B (mod A). By the argument above, we can apply
Theorem 1.1 witl¥ := ©. Then there exist infinitely many positive integéyssuch that

O(N) =0, (3.6)
{ N =r(1+hlC) (mod hlA). 3.7)
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The congruence (3.7) implies that the integérs a multiple ofr, but not ofr + 1, ..., h. Hence, by (3.2)
we haves; ;(N) = 0 for anyi, j with < j < h. Thus, by (3.1), (3.2), and (3.6)

l J4
0= @(N) = Zgi,rsi,r(N) = Zgi,rei(N/T)u
=1 =1

which gives (3.3). Moreover, the congruence (3.4) follows by (3.7), sinece N/r = 1+ hlC = B
(mod A). Theorem 1.2 is proved.

4 Proofs of Corollaries 1.1 and 1.2

We first give a sufficient condition for an arithmetic functiéto satisfy the conditiofiH3) in Theorem 1.1.
Recall thatd(n) is the divisor function, defined in (1.3).

Lemma 4.1. Letd be an arithmetic function. Assume that there exists a positive constarth that
|0(n)| < (24 logn)®d(n), n > 1. (4.2)
Thend satisfies the conditiofH2) in Theorem 1.1.

Proof. Let a andb be arbitrary coprime positive integers.df> max{a, b}, then we have

;d(ai+b)<2§: Z 1<2 Z <1+L3J>§4n(2+logn),

1=0 d<\/ai+b d<+v/n2+n
d|ai+b

so that by (4.1)

> 10(ai + )] <Y (2 +log(ai + b))"d(ai + b)

1=0 =0
n
< 2%(2+1logn)® Y d(ai +b)
=0
< n(2 + logn)? 3.

The proof of Lemma 4.1 is completed. O

Proof of Corollary 1.1 Clearly6(n) := d(n)a,, satisfies the conditioH;) for the sequence of prime
numbers and := |¢| — 1. Moreoverd(n) satisfie§ Hy) by Lemma 4.1 and therefore Theorem 1.2 applies,
which proves Corollary 1.1. O

Next we prove Corollary 1.2. In what follows, |1ét := {e,,},>1 € £ andF; := F,(E) be as defined in
(1.11). Define

a;(n) := Z 1, 1=1,2,...,/L (4.2)
ztn, x€Fs
By definition (4.2), we have
ai(n) = [+ loy/i]), i=1,2,....¢ (4.3)

Jj=1

9
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for the integem = e 'e” - --ef™ € Fy (i.e.,0; < s — 1 for anyj) with distinct integers;, , e;,, . . . , €;,, in
E,and
a;(mn) = a;(m)a;(n), 1=1,2,...,¢, (4.4)

for coprime positive integers,, n such that at least one et andn belongs toFs.
Proof of Corollary 1.2 We use the expressions

ai(g) =Y 1_1 :Zquj(f)l :Z“Z;:), i=1,2,....0,

ni
neFy q n=1

wheret;(n) := 1if n = y* withy € F}, := 0 otherwise, and;(n) is as defined in (4.2). Then the arithmetic
functionsa, satisfy(H; ) for the abovell = {e,, }>1 andy := |¢|L—1, whereL :=lem(1,2,...,¢). Indeed,
assuming (1.5) for large distinct integess, e;,, . . ., €;,, in E, we have by (4.3) and (4.4)

i) = ai (e e, ) sl = (14 [l 2 = 1] ) ) =l 2o

where we used the assumptign= |¢|L — 1 < s — 1 at the second equality. Hence,(n) is divisible
by ¢"* and the arithmetic functions;’s satisfy the conditior{#;). Moreover, by definition (4.2) we have
lai(n)| < d(n) for everyi = 1,2,...,¢, so thata;’s satisfy(Hz) by Lemma 4.1

Suppose to the contrary that thé + 1 numbers (1.12)

A 1 .
L oald) =) = :Z‘“(.") (i=1,2,....0,j=1,2,....h)

are linearly dependent ové€r. Then, applying Theorem 1.2 with := «a;, we find that there exist integers
&y &rit, -, & With €. 24 0 such that the following property holdBor any positive integer paid, B with
ged(A, hl) = 1, there exist a positive integersuch that

{ Erar(n) + &rp1ar41(n) + -+ + &eag(n) = 0, (4.5)
n=B (mod A), (4.6)

where we note that the integefss are independent ol and B. Let¢{ := max;>, |£;| andk be a positive
integer with2*|¢,.| > ¢¢. Now we consider (4.5) and (4.6) for the integers

)r—i—l

A= (eyt1€ut2 " Eutk , B = (ey+1€u+2 - €utk) 4.7)

wherew is the least integer such thatd(e,,, h!) = 1 holds for everym > w. Clearly,ged(A,h!) = 1.
Moreover, by (4.6) and (4.7) we have the form= (ey1€y+42 - - €yrr)” M with ged(e,, M) = 1. Noting
thatr < ¢ <|q|L — 1 < s — 1, we obtain by (4.3) and (4.4)

(n) = 2ka; (M) if i=r,
GEL 0 @M i i

Sincea, (M) > a;(M) > 1foreveryi =r +1,..., h, we have by (4.5)
2l6r] - ar (M) = & lar(n) = [€rp1ara1(n) + - + Eeag(n)| < €€ - ap (M),

so that2¥|¢,.| < (€. This is a contradiction and the proof of the first assertion of Corollary 1.2 is completed.
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The second assertion follows from the identities

1 . .
Z — :ai(qj)_2ai(q2j>7 7’7.]:1727
@™ +1
TLGFS

and the first assertion shown above. O

Acknowledgments. The authors would like to express their sincere gratitude to the referee for careful
reading the manuscript and for giving useful comments. This work was supported by JSPS KAKENHI
Grant Number JP18K03201.

References

[1] Bertrand, D., Theta functions and transcendeReenanujan J1 (1997), 339-350.

[2] Chowla, S., On series of the Lambert type which assume irrational values for rational values of the
argumentProc. Natl. Inst. Sci. IndidPart A13(1947), 171-173.

[3] Duverney, D., Propétes arithnétiques d’'une &rie liee aux fonctions #ta, Acta Arith 64 (1993),
175-188.

[4] Duverney, D., A propos de l&ése) >~ 2"/(q¢" — 1), J. Theor. Nombres Bord»8 (1996), 173-181.

[5] Duverney, D., Nishioka, Ke., Nishioka, Ku., and Shiokawa, I., Transcendence of Jacobi’s theta series,
Proc. Japan Acad. Ser. A Math. S¢R (1996), 202—-203.

[6] Duverney, D., Arithmetical functions and irrationality of Lambert serie®imphantine Analysis and
Related FieldsAIP Conference Proceedin@885(2011), 5-16.

[7] Erdds, P., On arithmetical properties of Lambert serdesndian Math. Soc. (N.S1)2 (1948), 63—-66.
[8] Erdds, P., On the irrationality of certain seridgath. Studen86 (1969), 222—-226.

[9] Erdds, P. and Graham, R. LQId and New Problems and Results in Combinatorial Number Theory
Monogr. Enseign. Mat28, Enseignement Math., Geneva, 1980.

[10] Luca, F. and Tachiya, Y., Linear independence of certain Lambert sBres, Amer. Math. Sod.42
(2014), 3411-34109.

[11] Luca, F. and Tachiya, Y., Irrationality of Lambert series associated with a periodic sequende,
Number Theorl0 (2014), 623-636.

[12] Luca F. and Tachiya, Y., Linear independence results for the values of divisor functions R&vi&s,
KokylrokuNo. 2014, http://www.kurims.kyoto-u.ac.jp/ kyodo/kokyuroku/contents/2014.html.

[13] Nesterenko, Yu.V.Algebraic independenc¢@ata Institute of Fundamental Research, Narosa Publish-
ing House, New Delhi, 2009.

[14] Vandehey, J., On an incomplete argument of@srdn the irrationality of Lambert seridsitegers13
(2013), Paper No. A 58, 6 pp.



