IRRATIONALITY EXPONENTS OF NUMBERS RELATED WITH CAHEN'S CONSTANT

DANIEL DUVERNEY AND IEKATA SHIOKAWA

Abstract

We give lower and upper bounds of the irrationality exponent of general continued fractions satisfying certain conditions. Using it we estimate the irrationality exponents of continued fractions representing numbers related with Cahen's constant and deduce their transcendence from Roth's theorem.

1. Introduction

For a real number α, the irrationality exponent $\mu(\alpha)$ is defined by the infimum of the set of numbers μ for which the inequality

$$
\begin{equation*}
\left|\alpha-\frac{p}{q}\right|<\frac{1}{q^{\mu}} \tag{1.1}
\end{equation*}
$$

has only finitely many rational solutions p / q, or equivalently the supremum of the set of numbers μ for which the inequality (1.1) has infinitely many solutions. If α is irrational, then $\mu(\alpha) \geq 2$. If α is a real algebraic irrationality, then $\mu(\alpha)=2$ by Roth's theorem [8]. If $\mu(\alpha)=\infty$, then α is called a Liouville number.

The main theorem of this paper, Theorem 2 in Section 2, gives lower and upper bounds for the irrationality exponents $\mu(\alpha)$ of continued fractions

$$
\alpha=\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}}+\frac{a_{3}}{b_{3}}+\cdots,
$$

where a_{n} and b_{n} are nonzero integers satisfying certain conditions. We apply Theorem 2 to continued fractions representing numbers related to Cahen's constant and deduce their transcendence from the obtained lower bounds of their irrationality exponents.

In 1880 Sylvester [11] proved that any real number $0<x<1$ can be expanded uniquely in the series

$$
x=\sum_{n=0}^{+\infty} \frac{1}{t_{n}},
$$

where the t_{n} are integers satisfying the condition $t_{0} \geq 2, t_{n+1} \geq t_{n}^{2}-t_{n}+1(n \geq 0)$, and furthermore that x is rational if and only if the equality holds for all large n. He examined some of the properties of the (Sylvester) sequence $\left\{S_{n}\right\}_{n \geq 0}$ defined by

$$
\begin{equation*}
S_{0}=2, \quad S_{n+1}=S_{n}^{2}-S_{n}+1 \quad(n \geq 0) \tag{1.2}
\end{equation*}
$$

[^0]which satisfies
\[

$$
\begin{equation*}
\sum_{n=0}^{+\infty} \frac{1}{S_{n}}=\sum_{n=0}^{+\infty}\left(\frac{1}{S_{n}-1}-\frac{1}{S_{n+1}-1}\right)=\frac{1}{S_{0}-1}=1 \tag{1.3}
\end{equation*}
$$

\]

Cahen [2] and Sierpinski [9] independently obtained similar results for alternating series; namely, any irrational number $0<x<1$ can be uniquely written in the form

$$
x=\sum_{n=0}^{+\infty} \frac{(-1)^{n}}{u_{n}}
$$

where the u_{n} are integers satisfying $u_{0} \geq 1, u_{n+1} \geq u_{n}^{2}+u_{n}(n \geq 0)$. As an example, Cahen [2] mentioned that (Cahen's constant)

$$
\sum_{n=0}^{+\infty} \frac{(-1)^{n}}{u_{n}}=\frac{1}{1}-\frac{1}{2}+\frac{1}{6}-\frac{1}{42}+\frac{1}{1806}-\frac{1}{3263442}+\cdots
$$

is an irrational number, where $u_{0}=1, u_{n+1}=u_{n}^{2}+u_{n}(n \geq 0)$, and hence $u_{n}=$ $S_{n}-1(n \geq 0)$. We note that the sequence $\left\{s_{n}\right\}_{n \geq 0}$ defined by

$$
\begin{equation*}
s_{0}=2, \quad s_{n+1}=s_{n}^{2}+s_{n}-1 \quad(n \geq 0) \tag{1.4}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
\sum_{n=0}^{+\infty} \frac{(-1)^{n}}{s_{n}}=\sum_{n=0}^{+\infty}\left(\frac{(-1)^{n}}{s_{n}+1}-\frac{(-1)^{n+1}}{s_{n+1}+1}\right)=\frac{1}{s_{0}+1}=\frac{1}{3} \tag{1.5}
\end{equation*}
$$

In 1991 Davison and Shallit [4] proved the transcendence of Cahen's constant. Becker [1] improved the result by Mahler's method.

In this paper we generalize the sequences S_{n} and s_{n} defined in (1.2) and (1.4) by introducing the sequences $u_{n}=u_{n}(\varepsilon)$ satisfying $u_{0} \in \mathbb{N}, u_{0}>\max (1, \varepsilon)$, and the recurrence

$$
\begin{equation*}
u_{n+1}=u_{n}^{2}-\varepsilon u_{n}+\varepsilon \quad(n \geq 0) \tag{1.6}
\end{equation*}
$$

where ε is a non-zero integer given arbitrarily. Next, we define the numbers $\gamma_{l, \varepsilon}=$ $\gamma_{l, \varepsilon}\left(u_{0}\right)$ by

$$
\begin{equation*}
\gamma_{l, \varepsilon}=\sum_{n=0}^{+\infty}(-1)^{n}\left(\frac{\varepsilon^{n}}{u_{n}-\varepsilon}\right)^{l} \quad(l=1,2,3, \cdots) . \tag{1.7}
\end{equation*}
$$

We expand the numbers $\gamma_{l, \varepsilon}$ in continued fractions whose partial numerators a_{n} and denominators b_{n} satisfy the assumptions in Theorem 2, which will be formulated in section 2. Applying Theorem 2, we obtain the following

Theorem 1. Let $\gamma_{l, \varepsilon}$ be the numbers defined by (1.7). Assume that u_{0} and ε are coprime. Then $\mu\left(\gamma_{1, \varepsilon}\right)=3$ and

$$
\left\{\begin{array}{l}
2+\frac{2}{5} \leq \mu\left(\gamma_{2, \varepsilon}\right) \leq 2+\frac{4}{7} \tag{1.8}\\
2+\frac{2}{3 l-1} \leq \mu\left(\gamma_{l, \varepsilon}\right) \leq 2+\frac{3(l-1)}{3 l+1} \quad(l \geq 3)
\end{array}\right.
$$

Corollary 1. For every positive integer $l, \gamma_{l, \varepsilon}$ is a non-Liouville transcendental number.

Corollary 2. Assume that u_{n} satisfies (1.6). Define

$$
\begin{equation*}
\xi_{\varepsilon}=\xi_{\varepsilon}\left(u_{0}\right)=\sum_{n=0}^{+\infty} \frac{(-\varepsilon)^{n}}{u_{n}} \tag{1.9}
\end{equation*}
$$

Then $\mu\left(\xi_{\varepsilon}\right)=3$ and consequently ξ_{ε} is a non-Liouville transcendental number.
Proof. It rests on a formula which generalizes (1.3) and (1.5). We have

$$
\frac{1}{u_{n}-\varepsilon}-\frac{\varepsilon}{u_{n+1}-\varepsilon}=\frac{1}{u_{n}-\varepsilon}-\frac{\varepsilon}{u_{n}\left(u_{n}-\varepsilon\right)}=\frac{1}{u_{n}}
$$

which yields

$$
\begin{equation*}
\sum_{n=0}^{+\infty} \frac{\varepsilon^{n}}{u_{n}}=\sum_{n=0}^{+\infty}\left(\frac{\varepsilon^{n}}{u_{n}-\varepsilon}-\frac{\varepsilon^{n+1}}{u_{n+1}-\varepsilon}\right)=\frac{1}{u_{0}-\varepsilon} \in \mathbb{Q} \tag{1.10}
\end{equation*}
$$

Similarly, we can write

$$
\begin{equation*}
\gamma_{1, \varepsilon}=\sum_{n=0}^{+\infty}(-1)^{n} \frac{\varepsilon^{n}}{u_{n}-\varepsilon}=\sum_{n=0}^{+\infty}\left(\frac{\varepsilon^{2 n}}{u_{2 n}-\varepsilon}-\frac{\varepsilon^{2 n+1}}{u_{2 n+1}-\varepsilon}\right)=\sum_{n=0}^{+\infty} \frac{\varepsilon^{2 n}}{u_{2 n}} . \tag{1.11}
\end{equation*}
$$

Therefore by (1.9), (1.10) and (1.11)

$$
\begin{equation*}
\xi_{\varepsilon}=2 \gamma_{1, \varepsilon}-\frac{1}{u_{0}-\varepsilon}, \tag{1.12}
\end{equation*}
$$

which proves that $\mu\left(\xi_{\varepsilon}\right)=\mu\left(\gamma_{1, \varepsilon}\right)=3$ by Lemma 1 (Section 3 below).
We give some examples of the numbers $\gamma_{l, \varepsilon}$ and ξ_{ε}.
Example 1. When $\varepsilon=1$ and $u_{0}=2$, we have

$$
\begin{aligned}
\gamma_{l, 1}(2) & =\sum_{n=0}^{+\infty} \frac{(-1)^{n}}{\left(S_{n}-1\right)^{l}} \quad(l=1,2,3, \cdots) \\
\xi_{1}(2) & =\sum_{n=0}^{+\infty} \frac{(-1)^{n}}{S_{n}}
\end{aligned}
$$

In particular, $\gamma_{1,1}(2)$ is Cahen's constant.
Example 2. When $\varepsilon=-1$ and $u_{0}=2$, we obtain

$$
\begin{aligned}
\gamma_{l,-1}(2) & =\sum_{n=0}^{+\infty} \frac{(-1)^{n}}{\left(s_{n}+1\right)^{l}} \quad(l=2,4,6, \cdots) \\
\gamma_{l,-1}(2) & =\sum_{n=0}^{+\infty} \frac{1}{\left(s_{n}+1\right)^{l}} \quad(l=1,3,5, \cdots) \\
\xi_{-1}(2) & =\sum_{n=0}^{+\infty} \frac{1}{s_{n}}
\end{aligned}
$$

Example 3. When $\varepsilon=2$ and $u_{0}=3, u_{n}$ is the n-th Fermat number:

$$
u_{n}=F_{n}=2^{2^{n}}+1
$$

Therefore we have

$$
\begin{aligned}
\gamma_{l, 2}(3) & =\sum_{n=0}^{+\infty}(-1)^{n}\left(\frac{2^{n}}{F_{n}-2}\right)^{l}=\sum_{n=0}^{+\infty}(-1)^{n}\left(\frac{2^{n}}{2^{2^{n}}-1}\right)^{l} \quad(l=1,2,3, \cdots) \\
\xi_{2}(3) & =\sum_{n=0}^{+\infty} \frac{(-2)^{n}}{F_{n}}
\end{aligned}
$$

It should be noted that the irrationality exponent of the sum of the reciprocals of Fermat numbers is equal to 2 (see [3]).

Example 4. Denote by L_{n} the sequence of Lucas numbers. Define

$$
v_{n}=L_{2^{n+1}}=\Phi^{2^{n+1}}+\Phi^{-2^{n+1}}
$$

where $\Phi=\frac{1}{2}(1+\sqrt{5})$ is the Golden number. Then clearly $v_{n+1}=v_{n}^{2}-2$. If we put $u_{n}=v_{n}+2$, we see that $u_{0}=5$ and

$$
u_{n+1}=u_{n}^{2}-4 u_{n}+4
$$

for every $n \geq 0$. Therefore

$$
\begin{aligned}
\gamma_{l, 4}(5) & =\sum_{n=0}^{+\infty}(-1)^{n}\left(\frac{4^{n}}{L_{2^{n+1}}-2}\right)^{l} \quad(l=1,2,3, \cdots) \\
\xi_{4}(5) & =\sum_{n=0}^{+\infty} \frac{(-4)^{n}}{L_{2^{n+1}}}
\end{aligned}
$$

The paper is organized as follows. In section 2 we state Theorem 2, which gives lower and upper bound for the irrationality exponent of general continued fractions under certain conditions. Section 3 is devoted to the proof of Theorem 2. In section 4, we prove Theorem 1 above by using Theorem 2. Finally, in section 5 we give an alternative proof of a special case of Theorem 1 , namely $\mu\left(\gamma_{1, \varepsilon}\right)=3$, by using approximations by the truncated sums of its defining series (1.7) in place of convergents of some continued fraction expansion. This proof rests heavily on formula (1.11), and for this reason it doesn't allow to estimate $\mu\left(\gamma_{l, \varepsilon}\right)$ for $l \geq 2$.

2. Irrationality exponents for general continued fractions

We employ the usual notations for continued fractions :

$$
b_{0}+\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}}+\cdots+\frac{a_{n}}{b_{n}}=b_{0}+\frac{a_{1}}{b_{1}+\frac{a_{2}}{b_{2}+\ddots \cdot+\frac{a_{n}}{b_{n}}}}=\frac{A_{n}}{B_{n}}
$$

and

$$
b_{0}+\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}}+\frac{a_{3}}{b_{3}}+\cdots=\lim _{n \rightarrow+\infty} \frac{A_{n}}{B_{n}}
$$

where $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ are defined by

$$
\left\{\begin{array}{l}
A_{-1}=1, \quad A_{0}=b_{0}, \quad B_{-1}=0, \quad B_{0}=1 \tag{2.1}\\
A_{n}=b_{n} A_{n-1}+a_{n} A_{n-2} \quad(n \geq 1) \\
B_{n}=b_{n} B_{n-1}+a_{n} B_{n-2} \quad(n \geq 1)
\end{array}\right.
$$

For complex numbers $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ with $a_{n} \neq 0$ for all $n \geq 1$, the infinite continued fraction written above is said to be convergent if at most a finite number
of B_{n} vanish and if the limit exists. We refer to [5] or [7] for basic formulas and properties of continued fractions.

Theorem 2. Let an infinite continued fraction

$$
\begin{equation*}
\alpha=\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}}+\frac{a_{3}}{b_{3}}+\cdots \tag{2.2}
\end{equation*}
$$

be convergent, where $a_{n}, b_{n}(n \geq 1)$ are non zero rational integers. Assume that

$$
\begin{equation*}
\sum_{n=1}^{+\infty}\left|\frac{a_{n+1}}{b_{n} b_{n+1}}\right|<\infty \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left|\frac{a_{1} a_{2} \cdots a_{n}}{b_{1} b_{2} \cdots b_{n}}\right|=0 \tag{2.4}
\end{equation*}
$$

Then α is irrational and its irrationality exponent $\mu(\alpha)$ satisfies

$$
\begin{equation*}
2+\sigma \leq \mu(\alpha) \leq 2+\max \left(\tau_{1}, \tau_{2}\right) \tag{2.5}
\end{equation*}
$$

where

$$
\begin{align*}
\sigma & =\limsup _{n \rightarrow+\infty} \frac{\log \left|b_{n+1}\right|-\log \left|a_{1} a_{2} \cdots a_{n+1}\right|}{\log \left|b_{1} b_{2} \cdots b_{n}\right|}, \tag{2.6}\\
\tau_{1} & =\limsup _{n \rightarrow+\infty} \frac{\log \left|a_{1} a_{2} \cdots a_{n}\right|}{\log \left|b_{1} b_{2} \cdots b_{n}\right|-\log \left|a_{1} a_{2} \cdots a_{n}\right|}, \tag{2.7}
\end{align*}
$$

and

$$
\begin{equation*}
\tau_{2}=\limsup _{n \rightarrow+\infty} \frac{\log \left|b_{n+1}\right|-\log \left|a_{1} a_{2} \cdots a_{n+1}\right|+2 \log \left(A_{n}, B_{n}\right)}{\log \left|b_{1} b_{2} \cdots b_{n}\right|-\log \left|a_{1} a_{2} \cdots a_{n}\right|} \tag{2.8}
\end{equation*}
$$

with $\left(A_{n}, B_{n}\right)$ the greatest common divisor of A_{n} and B_{n}.
Remark 1. If we assume in Theorem 2 that $a_{n}>0$ and $b_{n}>0$ for every $n \geq 1$, (2.1) implies that

$$
b_{n}<\frac{B_{n}}{B_{n-1}}=b_{n}+a_{n} \frac{B_{n-2}}{B_{n-1}}<b_{n}+\frac{a_{n}}{b_{n-1}},
$$

and therefore by an easy induction

$$
\begin{equation*}
b_{1} b_{2} \cdots b_{n}<B_{n}<b_{1} b_{2} \cdots b_{n} \prod_{k=1}^{n}\left(1+\frac{a_{k}}{b_{k} b_{k-1}}\right)<K b_{1} b_{2} \cdots b_{n} \tag{2.9}
\end{equation*}
$$

where $K=\prod_{k=1}^{\infty}\left(1+a_{k} / b_{k} b_{k-1}\right)$. Therefore the upper bound τ_{1} given by (2.7) is the same, in this case, as the upper bound given by Lemma 2.3 in [6].

Corollary 3. Let α be given in Theorem 2. If $\sigma>0$, then α is a transcendental number.

Theorem 2 with the formula

$$
\begin{equation*}
A_{n} B_{n-1}-A_{n-1} B_{n}=(-1)^{n-1} a_{1} a_{2} \cdots a_{n} \quad(n \geq 1) \tag{2.10}
\end{equation*}
$$

leads to the following corollary, which will be proved at the end of Section 3.

Corollary 4. Let an infinite continued fraction

$$
\alpha=\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}}+\cdots+\frac{a_{n}}{b_{n}}
$$

be convergent, where $a_{n}, b_{n}(n \geq 1)$ are non-zero rational integers. Assume that

$$
\begin{equation*}
\sum_{n=1}^{+\infty}\left|\frac{a_{n+1}}{b_{n} b_{n+1}}\right|<\infty \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{\log \left|a_{n}\right|}{\log \left|b_{n}\right|}=0 \tag{2.12}
\end{equation*}
$$

Then α is irrational and

$$
\mu(\alpha)=2+\limsup _{n \rightarrow+\infty} \frac{\log \left|b_{n+1}\right|}{\log \left|b_{1} b_{2} \cdots b_{n}\right|}
$$

Remark 2. The irrationality exponent of an irrational number α with a simple continued fraction expansion

$$
\alpha=\left[b_{0} ; b_{1}, b_{2}, \cdots\right]
$$

and convergents $p_{n} / q_{n}=\left[b_{0} ; b_{1}, b_{2}, \cdots, b_{n}\right]$ is given by

$$
\begin{equation*}
\mu(\alpha)=2+\limsup _{n \rightarrow \infty} \frac{\log b_{n+1}}{\log q_{n}} \tag{2.13}
\end{equation*}
$$

(cf. [10]). We note that, if b_{n} satisfies

$$
\sum_{n=1}^{+\infty} \frac{1}{b_{n} b_{n+1}}<\infty
$$

then (2.13) becomes by using (2.9)

$$
\begin{equation*}
\mu(\alpha)=2+\limsup _{n \rightarrow \infty} \frac{\log b_{n+1}}{\log \left(b_{1} b_{2} \cdots b_{n}\right)} \tag{2.14}
\end{equation*}
$$

Hence Corollary 4 provides an extension of the formula (2.14) to a general continued fraction. Note also that the irrationality exponent for Cahen's constant $\gamma_{1,1}(2)$ could be computed from (2.14) by using the continued fraction expansion obtained by Davison and Shallit in [4]. But this is not the case for $\gamma_{l, \varepsilon}\left(u_{0}\right)$ if $(l, \varepsilon) \neq(1,1)$.

3. Proof of Theorem 2

For the proof of Theorem 2 we need the following lemma, which is well known (see for example [6], Lemma 2.2). However, we will give here a self-contained proof, different from the proof in [6].

Lemma 1. Let α be an irrational number. Then

$$
\begin{equation*}
\mu(\alpha)=\mu\left(\frac{a+b \alpha}{c+d \alpha}\right) \tag{3.1}
\end{equation*}
$$

for all integers a, b, c and d with $a d-b c \neq 0$.

Proof. Let α be a non-Liouville number. It is easily seen that

$$
\begin{equation*}
\mu(\alpha+m)=\mu(n \alpha)=\mu(\alpha) \tag{3.2}
\end{equation*}
$$

for any rational integers m and $n \neq 0$. We prove that $\mu(1 / \alpha)=\mu(\alpha)$ for $\alpha>0$. Suppose that (1.1) has infinitely many solutions p / q with $p, q>0$. We can assume that $\alpha / 2<p / q<2 \alpha$. Then

$$
\left|\frac{1}{\alpha}-\frac{q}{p}\right|<\frac{C}{p^{\mu}}<\frac{1}{p^{\mu-\varepsilon}}
$$

has infinitely many solutions q / p, where $C=(2 \alpha)^{\mu-1} / \alpha$ and $\varepsilon>0$. This implies $\mu(1 / \alpha) \geq \mu(\alpha)$. Replacing α by $1 / \alpha$, we have $\mu(\alpha) \geq \mu(1 / \alpha)$, and so $\mu(\alpha)=$ $\mu(1 / \alpha)$. Now, if $d=0$ we have by (3.2)

$$
\mu\left(\frac{a+b \alpha}{c}\right)=\mu(a+b \alpha)=\mu(b \alpha)=\mu(\alpha)
$$

and similarly for $d \neq 0$

$$
\mu\left(\frac{a+b \alpha}{c+d \alpha}\right)=\mu\left(\frac{1}{d}\left(b+\frac{a d-b c}{c+d \alpha}\right)\right)=\mu\left(\frac{1}{c+d \alpha}\right)=\mu(c+d \alpha)=\mu(\alpha) .
$$

Hence the lemma follows if α is not a Liouville number. As a consequence, we see that α is not a Liouville number if and only if

$$
\beta=\frac{a+b \alpha}{c+d \alpha}
$$

is not a Liouville number. Therefore, if α is a Liouville number, then β is also a Liouville number and $\mu(\alpha)=\mu(\beta)=\infty$, which proves Lemma 1 .

Proof of Theorem 2. By the assumption (2.3), there is a positive integer N such that

$$
\begin{equation*}
\left|\frac{a_{n+1}}{b_{n} b_{n+1}}\right| \leq \frac{1}{4} \quad(n \geq N) \tag{3.3}
\end{equation*}
$$

In the following, we assume that $N=1$ and the general case $N \geq 2$ will be discussed at the end of the proof. For any integers $n \geq 0$ and $k \geq 1$ we define

$$
\left\{\begin{array}{ll}
A_{n,-1}=1, & A_{n, 0}=0, \\
A_{n, k}=b_{n+k} A_{n, k-1}+a_{n+k} A_{n, k-2} \\
B_{n,-1}=0, & B_{n, 0}=1,
\end{array} B_{n, k}=b_{n+k} B_{n, k-1}+a_{n+k} B_{n, k-2}, ~ l\right.
$$

so that

$$
\frac{A_{n, k}}{B_{n, k}}=\frac{a_{n+1}}{b_{n+1}}+\frac{a_{n+2}}{b_{n+2}}+\cdots+\frac{a_{n+k}}{b_{n+k}},
$$

and

$$
\begin{equation*}
\alpha_{n+1}=\frac{a_{n+1}}{b_{n+1}}+\frac{a_{n+2}}{b_{n+2}}+\frac{a_{n+3}}{b_{n+3}}+\cdots=\lim _{k \rightarrow+\infty} \frac{A_{n, k}}{B_{n, k}} \tag{3.4}
\end{equation*}
$$

In particular,

$$
\begin{align*}
\alpha & =\alpha_{1}=\lim _{n \rightarrow+\infty} \frac{A_{n}}{B_{n}} \tag{3.5}\\
& =\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}}+\cdots+\frac{a_{n-1}}{b_{n-1}}+\frac{a_{n}}{b_{n}+\alpha_{n+1}}=\frac{A_{n}+\alpha_{n+1} A_{n-1}}{B_{n}+\alpha_{n+1} B_{n-1}}
\end{align*}
$$

where $A_{n}=A_{0, n}$ and $B_{n}=B_{0, n}(n \geq 1)$. We have for $k \geq 2$

$$
\left\{\begin{array}{c}
A_{n, 1}=a_{n+1}, \quad A_{n, k}=a_{n+1} b_{n+2} b_{n+3} \cdots b_{n+k} \theta_{n, 1} \theta_{n, 2} \cdots \theta_{n, k} \tag{3.6}\\
B_{n, 1}=b_{n+1}, \quad B_{n, k}=b_{n+1} b_{n+2} b_{n+3} \cdots b_{n+k} \delta_{n, 1} \delta_{n, 2} \cdots \delta_{n, k}
\end{array}\right.
$$

with

$$
\left\{\begin{array}{l}
\theta_{n, 1}=\theta_{n, 2}=1, \quad \theta_{n, k}=1+\frac{a_{n+k}}{b_{n+k-1} b_{n+k} \theta_{n, k-1}} \quad(k \geq 3) \tag{3.7}\\
\delta_{n, 1}=1, \quad \delta_{n, k}=1+\frac{a_{n+k}}{b_{n+k-1} b_{n+k} \delta_{n, k-1}} \quad(k \geq 2)
\end{array}\right.
$$

From (3.3) and (3.7) we deduce by induction on k that

$$
\begin{equation*}
\frac{1}{2} \leq \theta_{n, k} \leq 2, \quad \frac{1}{2} \leq \delta_{n, k} \leq 2 \quad(k \geq 1) \tag{3.8}
\end{equation*}
$$

We remark that $A_{n, k} B_{n, k} \neq 0$ for any $n \geq 0$ and $k \geq 1$ by (3.6) with (3.8). It follows from (3.4) and (3.6) that

$$
\frac{b_{n+1} \alpha_{n+1}}{a_{n+1}}=\prod_{k=1}^{+\infty} \frac{\theta_{n, k}}{\delta_{n, k}} \quad(n \geq 0)
$$

where the infinite product converges to a non zero limit in view of (2.3), (3.7) and (3.8). As $\lim _{n \rightarrow+\infty} \theta_{n, k}=\lim _{n \rightarrow+\infty} \delta_{n, k}=1$ uniformly with respect to k, we find

$$
\lim _{n \rightarrow+\infty} \frac{b_{n+1} \alpha_{n+1}}{a_{n+1}}=1
$$

particularly,

$$
\begin{equation*}
\frac{3}{4} \leq \frac{b_{n+1} \alpha_{n+1}}{a_{n+1}} \leq \frac{4}{3} \quad\left(n \geq n_{0}\right) \tag{3.9}
\end{equation*}
$$

Furthermore, since $B_{n} / B_{n-1}=b_{n} \delta_{0, n}$ by (3.6), we have by (3.3) and (3.8)

$$
\begin{equation*}
\left|\frac{a_{n+1}}{b_{n+1}} \frac{B_{n-1}}{B_{n}}\right| \leq \frac{1}{2} \quad(n \geq 1) . \tag{3.10}
\end{equation*}
$$

Applying the formula (2.10), we deduce from (3.5)

$$
\alpha-\frac{A_{n}}{B_{n}}=\frac{(-1)^{n} \alpha_{n+1} a_{1} a_{2} \cdots a_{n}}{B_{n}\left(B_{n}+\alpha_{n+1} B_{n-1}\right)}=\frac{(-1)^{n} a_{1} a_{2} \cdots a_{n+1}}{b_{n+1} B_{n}^{2}\left(\frac{a_{n+1}}{b_{n+1} \alpha_{n+1}}+\frac{a_{n+1}}{b_{n+1}} \frac{B_{n-1}}{B_{n}}\right)}
$$

which together with (3.9) and (3.10) yields

$$
\begin{equation*}
\frac{1}{4} \frac{\left|a_{1} a_{2} \cdots a_{n+1}\right|}{\left|b_{n+1}\right| B_{n}^{2}}<\left|\alpha-\frac{A_{n}}{B_{n}}\right|<4 \frac{\left|a_{1} a_{2} \cdots a_{n+1}\right|}{\left|b_{n+1}\right| B_{n}^{2}} \quad\left(n \geq n_{0}\right) \tag{3.11}
\end{equation*}
$$

It follows from (3.6) that

$$
\begin{equation*}
\frac{2}{3} \rho\left|b_{1} b_{2} \cdots b_{n}\right|<\left|B_{n}\right|<\frac{3}{2} \rho\left|b_{1} b_{2} \cdots b_{n}\right| \quad\left(n \geq n_{1} \geq n_{0}\right) \tag{3.12}
\end{equation*}
$$

where $\rho=\prod_{k=0}^{\infty} \delta_{0, k}>0$. Combining (3.11) and (3.12), we obtain

$$
\begin{equation*}
\frac{1}{6 \rho}\left|\frac{a_{1} a_{2} \cdots a_{n+1}}{b_{1} b_{2} \cdots b_{n+1}}\right|<\left|B_{n} \alpha-A_{n}\right|<\frac{6}{\rho}\left|\frac{a_{1} a_{2} \cdots a_{n+1}}{b_{1} b_{2} \cdots b_{n+1}}\right| \quad\left(n \geq n_{1}\right) \tag{3.13}
\end{equation*}
$$

Suppose that α is a rational number a / b with $b>0$. Then we have by (3.13)

$$
1 \leq\left|a B_{n}-b A_{n}\right|<\frac{6 b}{\rho}\left|\frac{a_{1} a_{2} \cdots a_{n+1}}{b_{1} b_{2} \cdots b_{n+1}}\right| \quad\left(n \geq n_{1}\right)
$$

where the right-hand side tends to zero as $n \rightarrow \infty$ by the assumption (2.4), which is a contradiction. Hence α is irrational.

Let σ be defined in (2.6). We prove the lower bound for $\mu(\alpha)$ in (2.5). There is nothing to prove if $\sigma \leq 0$ and we can assume that $\sigma>0$. Taking the logarithms in (3.11) yields

$$
\begin{equation*}
\log \left|\alpha-\frac{A_{n}}{B_{n}}\right|<\log 4-\left(\log \left|b_{n+1}\right|-\log \left|a_{1} a_{2} \cdots a_{n+1}\right|\right)-2 \log \left|B_{n}\right| \tag{3.14}
\end{equation*}
$$

As $\sigma>0$, for $\varepsilon>0$ sufficiently small there exist infinitely many n such that

$$
\begin{equation*}
\frac{\log \left|b_{n+1}\right|-\log \left|a_{1} a_{2} \cdots a_{n+1}\right|}{\log \left|b_{1} b_{2} \cdots b_{n}\right|} \geq \sigma-\varepsilon>0 \tag{3.15}
\end{equation*}
$$

Moreover, by the right-hand side of (3.12), we have for every n sufficiently large

$$
\begin{equation*}
\log \left|b_{1} b_{2} \cdots b_{n}\right|>\log \left|B_{n}\right|-\log \left(\frac{3 \rho}{2}\right)>(1-\varepsilon) \log \left|B_{n}\right|>0 \tag{3.16}
\end{equation*}
$$

Hence, by using (3.14), (3.15) and (3.16) we obtain for every $\varepsilon>0$ and infinitely many n

$$
\begin{aligned}
\log \left|\alpha-\frac{A_{n}}{B_{n}}\right| & <\log 4-(\sigma-\varepsilon)(1-\varepsilon) \log \left|B_{n}\right|-2 \log \left|B_{n}\right| \\
& <-(2+\sigma-\varepsilon(\sigma+2-\varepsilon)) \log \left|B_{n}\right|
\end{aligned}
$$

Therefore, for every $\varepsilon>0$ sufficiently small there exist infinitely many n such that

$$
\left|\alpha-\frac{A_{n}}{B_{n}}\right|<\frac{1}{B_{n}^{2+\sigma-\varepsilon(\sigma+2-\varepsilon)}},
$$

which proves that $\mu(\alpha) \geq 2+\sigma$.
We prove now the upper bound for $\mu(\alpha)$ in (2.5). Choose any rational number p / q. We may assume that p and q are coprime and

$$
q>\frac{\rho}{12} \min _{n \geq n_{1}}\left|\frac{b_{1} b_{2} \cdots b_{n}}{a_{1} a_{2} \cdots a_{n}}\right|
$$

In view of (2.4) there exists $n=n(q) \geq n_{1}$ such that

$$
\begin{equation*}
\left|\frac{b_{1} b_{2} \cdots b_{n}}{a_{1} a_{2} \cdots a_{n}}\right| \leq \frac{12}{\rho} q<\left|\frac{b_{1} b_{2} \cdots b_{n+1}}{a_{1} a_{2} \cdots a_{n+1}}\right| \tag{3.17}
\end{equation*}
$$

We consider two cases:
Case 1. $A_{n} q-B_{n} p \neq 0$. Then $\left|A_{n} q-B_{n} p\right| \geq 1$. We have

$$
B_{n}\left(\alpha-\frac{p}{q}\right)=\frac{A_{n} q-B_{n} p}{q}+B_{n} \alpha-A_{n}
$$

The right inequalities in (3.13) and (3.17) yield

$$
\left|B_{n} \alpha-A_{n}\right|<\frac{1}{2 q}
$$

Hence we get

$$
\begin{equation*}
\left|\alpha-\frac{p}{q}\right|>\frac{1}{2 q\left|B_{n}\right|}=\frac{1}{2 q^{1+\tau_{1, n}}} \tag{3.18}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau_{1, n}=\frac{\log \left|B_{n}\right|}{\log q}<\frac{\log \left|b_{1} b_{2} \cdots b_{n}\right|+\log (3 \rho / 2)}{\log \left|b_{1} b_{2} \cdots b_{n}\right|-\log \left|a_{1} a_{2} \cdots a_{n}\right|+\log (\rho / 12)} \tag{3.19}
\end{equation*}
$$

using the right and left inequalities in (3.12) and (3.17) respectively.
Case 2. $A_{n} q-B_{n} p=0$. Then $A_{n}=\left(A_{n}, B_{n}\right) p, B_{n}=\left(A_{n}, B_{n}\right) q$, recalling that p and q are coprime. So we deduce from (3.11)

$$
\begin{equation*}
\left|\alpha-\frac{p}{q}\right|=\left|\alpha-\frac{A_{n}}{B_{n}}\right|>\frac{1}{4} \frac{\left|a_{1} a_{2} \cdots a_{n+1}\right|}{\left|b_{n+1}\right|\left(A_{n}, B_{n}\right)^{2} q^{2}}=\frac{1}{4} \frac{1}{q^{2+\tau_{2, n}}}, \tag{3.20}
\end{equation*}
$$

where

$$
\begin{aligned}
\tau_{2, n}=\frac{\log \left|b_{n+1}\right|-\log \mid a_{1} a_{2} \cdots}{} & =a_{n+1} \mid+2 \log \left(A_{n}, B_{n}\right) \\
& \log q \\
& <\frac{\log \left|b_{n+1}\right|-\log \left|a_{1} a_{2} \cdots a_{n+1}\right|+2 \log \left(A_{n}, B_{n}\right)}{\log \left|b_{1} b_{2} \cdots b_{n}\right|-\log \left|a_{1} a_{2} \cdots a_{n}\right|+\log (\rho / 12)}
\end{aligned}
$$

using the left inequality in (3.18). The upper bound

$$
\mu(\alpha) \leq 2+\max \left(\tau_{1}, \tau_{2}\right)
$$

is obtained from (3.18), (3.19) and (3.20), and the proof of Theorem 2 is completed in the case $N=1$.

We assume finally that $N \geq 2$. We can apply Theorem 2 to α_{N}. Then

$$
\begin{equation*}
2+\sigma \leq \mu\left(\alpha_{N}\right) \leq 2+\max \left(\tau_{1}, \tau_{2}\right) \tag{3.21}
\end{equation*}
$$

where

$$
\begin{aligned}
\sigma & =\limsup _{n \rightarrow+\infty} \frac{\log \left|b_{N+n}\right|-\log \left|a_{N} a_{N+1} \cdots a_{N+n}\right|}{\log \left|b_{N} b_{N+1} \cdots b_{N+n-1}\right|} \\
\tau_{1} & =\limsup _{n \rightarrow+\infty} \frac{\log \left|a_{N} a_{N+1} \cdots a_{N+n-1}\right|}{\log \left|b_{N} b_{N+1} \cdots b_{N+n-1}\right|-\log \left|a_{N} a_{N+1} \cdots a_{N+n-1}\right|} \\
\tau_{2} & =\limsup _{n \rightarrow+\infty} \frac{\log \left|b_{N+n}\right|-\log \left|a_{N} a_{N+1} \cdots a_{N+n}\right|+2 \log \left(A_{N-1, n}, B_{N-1, n}\right)}{\log \left|b_{N} b_{N+1} \cdots b_{N+n-1}\right|-\log \left|a_{N} a_{N+1} \cdots a_{N+n-1}\right|}
\end{aligned}
$$

However, we have for every $n \in \mathbb{N}$

$$
\left\{\begin{array}{l}
A_{N-1+n}=A_{N-2} A_{N-1, n}+A_{N-1} B_{N-1, n} \\
B_{N-1+n}=B_{N-2} A_{N-1, n}+B_{N-1} B_{N-1, n}
\end{array}\right.
$$

since the sequences $A_{N-1+n}, A_{N-1, n}, B_{N-1+n}$ and $B_{N-1, n}$ satisfy the same recurrence relation and this is true for $n=-1$ and $n=0$. Therefore

$$
\left(A_{N-1, n}, B_{N-1, n}\right) \leq\left(A_{N-1+n}, B_{N-1+n}\right)
$$

and the proof of Theorem 2 is complete because $\mu\left(\alpha_{N}\right)=\mu(\alpha)$ by (2.10), the last equality of (3.5), and Lemma 1.

Proof of Corollary 4. First we prove that the assumptions (2.11) and (2.12) imply (2.4). Indeed (2.4) holds trivially if $\left|a_{n}\right|=1$ for all large n. Otherwise, we see by (2.11) that $\lim _{n \rightarrow+\infty}\left|b_{1} b_{2} \cdots b_{n}\right|=+\infty$, and so

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \log \left|b_{1} b_{2} \cdots b_{n}\right|=+\infty \tag{3.22}
\end{equation*}
$$

From (2.12) and (3.22) we can deduce that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{\log \left|a_{1} a_{2} \cdots a_{n}\right|}{\log \left|b_{1} b_{2} \cdots b_{n}\right|}=0 \tag{3.23}
\end{equation*}
$$

This implies in particular that $\left|a_{1} a_{2} \cdots a_{n}\right|<\left|b_{1} b_{2} \cdots b_{n}\right|^{\frac{1}{2}}$ for every large n, and hence (2.4) follows.

Therefore we can apply Theorem 2. By the definition of σ, we have

$$
\sigma=\limsup _{n \rightarrow+\infty} \frac{\log \left|b_{n+1}\right|}{\log \left|b_{1} b_{2} \cdots b_{n}\right|}
$$

using (2.12) and (3.23). Similarly we get

$$
\tau_{1} \leq \limsup _{n \rightarrow+\infty} \frac{1}{\frac{\log \left|b_{1} b_{2} \cdots b_{n}\right|}{\log \left|a_{1} a_{2} \cdots a_{n}\right|}-1}=0 \leq \sigma
$$

Finally, we compute τ_{2}. Applying the formula (2.10) to $\left(A_{n}, B_{n}\right)$ in the definition of τ_{2}, we find

$$
\tau_{2} \leq \limsup _{n \rightarrow+\infty} \frac{\log \left|b_{n+1}\right|-\log \left|a_{n+1}\right|+\log \left|a_{1} a_{2} \cdots a_{n}\right|}{\log \left|b_{1} b_{2} \cdots b_{n}\right|-\log \left|a_{1} a_{2} \cdots a_{n}\right|}=\sigma
$$

and the proof is completed.

4. Proof of theorem 1

For proving theorem 1 we will need three lemmas.
Lemma 2. Let ε be a non zero integer. Let $u_{n}=u_{n}(\varepsilon)$ be defined by $u_{0} \in \mathbb{N}$, with $u_{0}>\max (1, \varepsilon)$, and

$$
\begin{equation*}
u_{n+1}=u_{n}^{2}-\varepsilon u_{n}+\varepsilon \quad(n \geq 0) \tag{4.1}
\end{equation*}
$$

Then u_{n} is a positive integer for every $n \geq 0$ and there exists a constant $\lambda>0$ such that

$$
\begin{equation*}
\log u_{n}=\lambda 2^{n}+O(1) \tag{4.2}
\end{equation*}
$$

Proof. First we prove by induction that

$$
\begin{equation*}
u_{n}>\max \left(2^{n-1}+1, \varepsilon\right) \tag{4.3}
\end{equation*}
$$

for every $n \geq 0$. This is true for $n=0$ by hypothesis. Assume that it is true for a given $n \geq 0$. We have by (4.1)

$$
\begin{equation*}
u_{n+1}-\varepsilon=u_{n}\left(u_{n}-\varepsilon\right) . \tag{4.4}
\end{equation*}
$$

This implies $u_{n+1}>\varepsilon$, since $u_{n}>\max \left(2^{n-1}+1, \varepsilon\right)$. Moreover

$$
u_{n+1}-u_{n}=\left(u_{n}-\varepsilon\right)\left(u_{n}-1\right)>2^{n-1}
$$

since by the induction hypothesis $u_{n}-\varepsilon \geq 1$ and $u_{n}>2^{n-1}+1$. Therefore

$$
u_{n+1}>u_{n}+2^{n-1}>2^{n}+1
$$

which proves (4.3). Hence the sequence u_{n} is a sequence of positive integers.
To prove (4.2), we observe that, for every positive integer k,

$$
\log u_{k}=2 \log u_{k-1}+\log \left(1-\frac{\varepsilon}{u_{k-1}}+\frac{\varepsilon}{u_{k-1}^{2}}\right)
$$

Multiplying by 2^{n-k} and summing for k from 1 to n yields

$$
\log u_{n}=2^{n} \log u_{0}+2^{n} \sum_{k=1}^{n} \frac{1}{2^{k}} \log \left(1-\frac{\varepsilon}{u_{k-1}}+\frac{\varepsilon}{u_{k-1}^{2}}\right) .
$$

Since $u_{n}>2^{n-1}+1$, the series

$$
\sum_{k=1}^{+\infty} \frac{1}{2^{k}} \log \left(1-\frac{\varepsilon}{u_{k-1}}+\frac{\varepsilon}{u_{k-1}^{2}}\right)
$$

is convergent, and we can write

$$
\begin{aligned}
\log u_{n} & =2^{n}\left(\log u_{0}+\sum_{k=1}^{+\infty} \frac{1}{2^{k}} \log \left(1-\frac{\varepsilon}{u_{k-1}}+\frac{\varepsilon}{u_{k-1}^{2}}\right)\right) \\
& -\sum_{k=n+1}^{+\infty} \frac{1}{2^{k-n}} \log \left(1-\frac{\varepsilon}{u_{k-1}}+\frac{\varepsilon}{u_{k-1}^{2}}\right) .
\end{aligned}
$$

Finally we have

$$
\left|\sum_{k=n+1}^{+\infty} \frac{1}{2^{k-n}} \log \left(1-\frac{\varepsilon}{u_{k-1}}+\frac{\varepsilon}{u_{k-1}^{2}}\right)\right| \leq \sum_{k=n+1}^{+\infty} \frac{1}{2^{k-n}} \leq 1
$$

when $n \rightarrow+\infty$, which proves (4.2).
Lemma 3. Let $x_{1}, x_{2}, x_{3} \cdots, y_{1}, y_{2}, y_{3} \cdots$ be non zero complex numbers, and let

$$
\begin{equation*}
X_{l}=\sum_{n=1}^{+\infty}(-1)^{n}\left(\frac{y_{1} y_{2} \cdots y_{n}}{x_{1} x_{2} \cdots x_{n}}\right)^{l}, \quad(l=1,2,3, \cdots) \tag{4.5}
\end{equation*}
$$

be convergent. Then

$$
X_{l}=\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}}+\cdots+\frac{a_{n}}{b_{n}}+\cdots
$$

where

$$
\left\{\begin{array}{l}
a_{1}=-y_{1}^{l}, \quad a_{n}=y_{n}^{l} x_{n-1}^{l-1} \quad(n \geq 2) \tag{4.6}\\
b_{1}=x_{1}^{l}, \quad b_{2}=x_{1}^{-1}\left(x_{2}^{l}-y_{2}^{l}\right) \\
b_{2 k}=\frac{x_{2} x_{4} \cdots x_{2 k-2}}{x_{1} x_{3} \cdots x_{2 k-1}}\left(x_{2 k}^{l}-y_{2 k}^{l}\right) \quad(k \geq 2) \\
b_{2 k+1}=\frac{x_{1} x_{3} \cdots x_{2 k-1}}{x_{2} x_{4} \cdots x_{2 k}}\left(x_{2 k+1}^{l}-y_{2 k+1}^{l}\right) \quad(k \geq 1)
\end{array}\right.
$$

Proof. Applying Euler's transformation

$$
\sum_{i=1}^{n} \rho_{1} \rho_{2} \cdots \rho_{i}=\frac{\rho_{1}}{1}+\frac{-\rho_{2}}{1+\rho_{2}}+\frac{-\rho_{3}}{1+\rho_{3}}+\cdots+\frac{-\rho_{n}}{1+\rho_{n}}
$$

with $\rho_{i}=-y_{i}^{l} x_{i}^{-l}(i \geq 1)$, we have

$$
X_{l}=\frac{-y_{1}^{l} x_{1}^{-l}}{1}+\frac{y_{2}^{l} x_{2}^{-l}}{1-y_{2}^{l} x_{2}^{-l}}+\frac{y_{3}^{l} x_{3}^{-l}}{1-y_{3}^{l} x_{3}^{-l}}+\cdots+\frac{y_{n}^{l} x_{n}^{-l}}{1-y_{n}^{l} x_{n}^{-l}}+\cdots
$$

Hence for any sequence t_{n} of non zero real numbers

$$
\begin{align*}
& X_{l}=\frac{-t_{1}\left(y_{1}^{l} x_{1}^{-l}\right)}{t_{1}}+\frac{t_{2} t_{1}\left(y_{2}^{l} x_{2}^{-l}\right)}{t_{2}\left(1-y_{2}^{l} x_{2}^{-l}\right)} \tag{4.7}\\
& \quad+\frac{t_{3} t_{2}\left(y_{3}^{l} x_{3}^{-l}\right)}{t_{3}\left(1-y_{3}^{l} x_{3}^{-l}\right)}+\cdots \\
&+\frac{t_{n} t_{n-1}\left(y_{n}^{l} x_{n}^{-l}\right)}{t_{n}\left(1-y_{n}^{l} x_{n}^{-l}\right)}+\cdots .
\end{align*}
$$

We apply (4.7) with $t_{1}=x_{1}^{l}, t_{2}=x_{1}^{-1} x_{2}^{l}$, and

$$
t_{2 k}=\frac{x_{2} x_{4} \cdots x_{2 k-2}}{x_{1} x_{3} \cdots x_{2 k-1}} x_{2 k}^{l} \quad(k \geq 2), \quad t_{2 k+1}=\frac{x_{1} x_{3} \cdots x_{2 k-1}}{x_{2} x_{4} \cdots x_{2 k}} x_{2 k+1}^{l} \quad(k \geq 1)
$$

We observe that

$$
t_{n+1} t_{n}=x_{n+1}^{l} x_{n}^{l-1} \quad(n \geq 1)
$$

Therefore from (4.7) we obtain

$$
\begin{equation*}
X_{l}=\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}}+\frac{a_{3}}{b_{3}}+\cdots+\frac{a_{n}}{b_{n}}+\cdots, \tag{4.8}
\end{equation*}
$$

where a_{n} and b_{n} are given by (4.6), which proves Lemma 3 .
Lemma 4. Let u_{n} be defined in Lemma 2. Assume moreover that $\left(u_{0}, \varepsilon\right)=1$. Then, for integers $m, n \geq 1$ and $0 \leq i<n$,
(i) $\quad\left(u_{n}, u_{i}\right)=\left(u_{n}, \varepsilon\right)=1$,
(ii) $\quad u_{n}^{m} \equiv \varepsilon^{m}\left(\bmod u_{i}\right)$,
(iii) $\frac{u_{n}^{m}-\varepsilon^{m}}{u_{n}-\varepsilon} \equiv m \varepsilon^{m-1}\left(\bmod u_{i}\right)$.

Proof. We have $u_{i+1} \equiv \varepsilon\left(\bmod u_{i}\right)$ by (4.1), and an easy induction using again (4.1) shows that

$$
u_{n} \equiv \varepsilon \quad\left(\bmod u_{i}\right) \quad \text { if } \quad i<n
$$

which proves $(i i)$ and (iii). For proving (i), assume that there exists a prime p which divides u_{1} and ε. Then by (4.1) p divides $u_{0}\left(u_{0}-\varepsilon\right)$ and p divides u_{0}, which is impossible since $\left(u_{0}, \varepsilon\right)=1$. Hence $\left(u_{0}, \varepsilon\right)=1$ implies $\left(u_{1}, \varepsilon\right)=1$ and by induction $\left(u_{n}, \varepsilon\right)=1$ for every $n \geq 0$. Now let $d=\left(u_{n}, u_{i}\right), i<n$. By using (ii) we have $u_{n} \equiv q u_{i}+\varepsilon$ with $q \geq 0$, and therefore d divides u_{i} and ε, whence $d=1$.

Proof of Theorem 1. By using (4.4), we see that

$$
\begin{equation*}
u_{n}-\varepsilon=\left(u_{1}-\varepsilon\right) u_{1} u_{2} \cdots u_{n-1} \quad(n \geq 2) \tag{4.9}
\end{equation*}
$$

By (4.9) we can write

$$
\begin{equation*}
\gamma_{l, \varepsilon}=\frac{1}{\left(u_{0}-\varepsilon\right)^{l}}-\frac{\varepsilon^{l}}{\left(u_{1}-\varepsilon\right)^{l}}\left(1+\sum_{n=1}^{+\infty}(-1)^{n}\left(\frac{\varepsilon^{n}}{u_{1} u_{2} \cdots u_{n}}\right)^{l}\right) \tag{4.10}
\end{equation*}
$$

Now we define

$$
\gamma_{l, \varepsilon}^{*}=\sum_{n=1}^{+\infty}(-1)^{n}\left(\frac{\varepsilon^{n}}{u_{1} u_{2} \cdots u_{n}}\right)^{l}
$$

Then $\mu\left(\gamma_{l, \varepsilon}\right)=\mu\left(\gamma_{l, \varepsilon}^{*}\right)$ by (4.10) and Lemma 1. From Lemma 3 with $x_{n}=u_{n}$ and $y_{n}=\varepsilon$ we get

$$
\begin{equation*}
\gamma_{l, \varepsilon}^{*}=\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}}+\cdots+\frac{a_{n}}{b_{n}}+\cdots \tag{4.11}
\end{equation*}
$$

with

$$
\left\{\begin{array}{l}
a_{1}=-\varepsilon^{l}, \quad a_{n}=\varepsilon^{l} u_{n-1}^{l-1} \quad(n \geq 2) \tag{4.12}\\
b_{1}=u_{1}^{l}, \quad b_{2}=u_{1}^{-1}\left(u_{2}^{l}-\varepsilon^{l}\right) \\
b_{2 k}=\frac{u_{2} u_{4} \cdots u_{2 k-2}}{u_{1} u_{3} \cdots u_{2 k-1}}\left(u_{2 k}^{l}-\varepsilon^{l}\right) \quad(k \geq 2) \\
b_{2 k+1}=\frac{u_{1} u_{3} \cdots u_{2 k-1}}{u_{2} u_{4} \cdots u_{2 k}}\left(u_{2 k+1}^{l}-\varepsilon^{l}\right) \quad(k \geq 1) .
\end{array}\right.
$$

Hence we can write by (4.9)

$$
\left\{\begin{array}{l}
b_{2 k}=\left(u_{1}-\varepsilon\right)\left(u_{2} u_{4} \cdots u_{2 k-2}\right)^{2} \frac{u_{2 k}^{l}-\varepsilon^{l}}{u_{2 k}-\varepsilon} \quad(k \geq 2) \tag{4.13}\\
b_{2 k+1}=\left(u_{1}-\varepsilon\right)\left(u_{1} u_{3} \cdots u_{2 k-1}\right)^{2} \frac{u_{2 k+1}^{l}-\varepsilon^{l}}{u_{2 k+1}-\varepsilon} \quad(k \geq 1)
\end{array}\right.
$$

and therefore $a_{n}, b_{n} \in \mathbb{N}^{0}$ for every $n \geq 1$. Moreover by (4.13) we also observe that, for every $n \geq 3$,

$$
\begin{equation*}
u_{n-2 k} \mid b_{n}, \quad 1 \leq k \leq \frac{1}{2}(n-1) \tag{4.14}
\end{equation*}
$$

where $a \mid b$ denotes as usual that a divides b. Now we apply Theorem 2 to the continued fraction $\gamma_{l, \varepsilon}^{*}$ with a_{n} and b_{n} given by (4.12). If we take the logarithms in (4.12) and use (4.2), we see after some calculation that

$$
\begin{align*}
\log \left|a_{n}\right| & =\lambda(l-1) 2^{n-1}+O(1), \tag{4.15}\\
\log \left|a_{1} a_{2} \cdots a_{n}\right| & =\lambda(l-1) 2^{n}+O(n) \tag{4.16}\\
\log b_{n} & =\frac{1}{3} \lambda(3 l-1) 2^{n}+O(n), \tag{4.17}\\
\log \left(b_{1} b_{2} \cdots b_{n}\right) & =\frac{2}{3} \lambda(3 l-1) 2^{n}+O\left(n^{2}\right) . \tag{4.18}
\end{align*}
$$

Therefore a_{n} and b_{n} satisfy the assumptions (2.3) and (2.4). Using (4.16)-(4.18) in (2.6) and (2.7), we obtain

$$
\sigma=\frac{2}{3 l-1}, \quad \tau_{1}=\frac{3(l-1)}{3 l+1}
$$

which already gives the lower bound for $\mu\left(\gamma_{l, \varepsilon}\right)$ by using Theorem 2 and the exact value $\mu\left(\gamma_{1, \varepsilon}\right)=3$ by using Corollary 4 .

To estimate τ_{2} defined by (2.8), we use the estimate

$$
\begin{equation*}
\log \left(A_{n}, B_{n}\right)=O\left(n^{2}\right) \tag{4.19}
\end{equation*}
$$

as $n \rightarrow \infty$, where A_{n}, B_{n} are defined in (2.1) with a_{n}, b_{n} given in (4.12). This estimate will be proved later. Then from (2.8) with (4.16)-(4.19) we can deduce

$$
\tau_{2}=\frac{4}{3 l+1}
$$

and we see that $\tau_{2}<\tau_{1}$ for $l \geq 3$, while $\tau_{2}>\tau_{1}$ for $l=2$. This yields the upper bound in (1.8).

It remains to prove (4.19). If $l=1$, then $\log \left(A_{n}, B_{n}\right)=O(n)$, since

$$
\begin{equation*}
\left(A_{n}, B_{n}\right) \mid \varepsilon^{n l}\left(u_{0} u_{1} \cdots u_{n-1}\right)^{l-1} \quad(n \geq 1, l \geq 1) \tag{4.20}
\end{equation*}
$$

by (2.10) and (4.12). So we can assume that $l \geq 2$. We define

$$
\begin{equation*}
d_{i}=d_{i}(n)=\left(\left(A_{n}, B_{n}\right), u_{i}\right) \quad(0 \leq i \leq n-1) \tag{4.21}
\end{equation*}
$$

By Lemma $4(i)$, we have $\left(d_{i}, d_{j}\right)=1$ if $i \neq j$, and therefore $d_{0} d_{1} \cdots d_{n-1}$ divides $\left(A_{n}, B_{n}\right)$. Put $\left(A_{n}, B_{n}\right)=k_{n} d_{0} d_{1} \cdots d_{n-1}$ and $u_{i}=d_{i} u_{i}^{\prime}$ for $i=0,1, \cdots, n-1$. Then by (4.21) we see that $\left(k_{n}, u_{i}^{\prime}\right)=1$ for $i=0,1, \cdots, n-1$. By (4.20) we have

$$
\begin{equation*}
k_{n} \mid \varepsilon^{n l}\left(d_{0} d_{1} \cdots d_{n-1}\right)^{l-1}\left(u_{0}^{\prime} u_{1}^{\prime} \cdots u_{n-1}^{\prime}\right)^{l-1} \quad(n \geq 1) \tag{4.22}
\end{equation*}
$$

which implies that $k_{n} \mid \varepsilon^{n l}\left(d_{0} d_{1} \cdots d_{n-1}\right)^{l-1}$, whence $\left(A_{n}, B_{n}\right) \mid \varepsilon^{n l}\left(d_{0} d_{1} \cdots d_{n-1}\right)^{l}$. Hence to prove (4.19) it is enough to prove that

$$
\begin{equation*}
\log \left(d_{1} d_{2} \cdots d_{n-1}\right)=O\left(n^{2}\right) \tag{4.23}
\end{equation*}
$$

since $d_{0} \leq u_{0}$. For proving this, we will estimate d_{j} for every integer j such that

$$
\begin{equation*}
1 \leq j \leq n-1 \tag{4.24}
\end{equation*}
$$

From (2.1) we have for every integer i such that $0 \leq i \leq n-2$

$$
\begin{gather*}
\binom{A_{n-i-1}}{A_{n-i}}=\left(\begin{array}{cc}
0 & 1 \\
a_{n-i} & b_{n-i}
\end{array}\right)\binom{A_{n-i-2}}{A_{n-i-1}} \tag{4.25}\\
\binom{A_{n-i-1}}{A_{n-i}}=\left(\begin{array}{cc}
a_{n-i-1} & b_{n-i-1} \\
a_{n-i-1} b_{n-i} & a_{n-i}+b_{n-i} b_{n-i-1}
\end{array}\right)\binom{A_{n-i-3}}{A_{n-i-2}} . \tag{4.26}
\end{gather*}
$$

Define for every integer i such that $0 \leq i \leq \frac{1}{2}(n-2)$

$$
N_{i}=\left(\begin{array}{cc}
a_{n-2 i-1} & b_{n-2 i-1} \tag{4.27}\\
a_{n-2 i-1} b_{n-2 i} & a_{n-2 i}+b_{n-2 i} b_{n-2 i-1}
\end{array}\right)
$$

By (4.26) we can write for every integer k such that $0 \leq k \leq \frac{1}{2}(n-1)$

$$
\begin{equation*}
\binom{A_{n-1}}{A_{n}}=\left(\prod_{i=0}^{k-1} N_{i}\right)\binom{A_{n-2 k-1}}{A_{n-2 k}} \tag{4.28}
\end{equation*}
$$

Case 1. Assume that $j=n-2 k$, with $1 \leq k \leq \frac{1}{2}(n-1)$.
Then by (4.12), Lemma 4 (ii) and (4.14) we have

$$
N_{i} \equiv\left(\begin{array}{cc}
a_{n-2 i-1} & b_{n-2 i-1} \tag{4.29}\\
0 & \varepsilon^{2 l-1}
\end{array}\right) \quad\left(\bmod u_{n-2 k}\right)
$$

Therefore by (4.28) we see that $A_{n} \equiv \varepsilon^{k(2 l-1)} A_{n-2 k}\left(\bmod u_{n-2 k}\right)$, and the same holds for B_{n}. As $d_{n-2 k} \mid u_{n-2 k}$ and $d_{n-2 k} \mid\left(A_{n}, B_{n}\right)$, this yields

$$
\begin{equation*}
d_{n-2 k} \mid \varepsilon^{k(2 l-1)}\left(A_{n-2 k}, B_{n-2 k}\right) \tag{4.30}
\end{equation*}
$$

By (4.20), this implies that

$$
d_{n-2 k} \mid \varepsilon^{n l+k(2 l-1)}\left(u_{0} u_{1} \cdots u_{n-2 k-1}\right)^{l-1}
$$

As $d_{n-2 k} \mid u_{n-2 k}$, we have $\left(d_{n-2 k}, u_{i}\right)=\left(d_{n-2 k}, \varepsilon\right)=1$ for $i<n-2 k$ by Lemma $4(i)$, and therefore

$$
\begin{equation*}
d_{n-2 k}=1, \quad 1 \leq k \leq \frac{1}{2}(n-1) \tag{4.31}
\end{equation*}
$$

Case 2. Assume that $j=n-2 k-1$, with $0 \leq k \leq \frac{1}{2}(n-2)$.

Then again by (4.12), Lemma 4 (ii) and (4.14) we have

$$
N_{i} \equiv \varepsilon^{2 l-1}\left(\begin{array}{cc}
1 & 0 \tag{4.32}\\
b_{n-2 i} & 1
\end{array}\right) \quad\left(\bmod u_{n-2 k-1}\right)
$$

which yields

$$
\prod_{i=0}^{k-1} N_{i} \equiv \varepsilon^{k(2 l-1)}\left(\begin{array}{cc}
1 & 0 \tag{4.33}\\
\sum_{i=0}^{k-1} b_{n-2 i} & 1
\end{array}\right) \quad\left(\bmod u_{n-2 k-1}\right)
$$

However by (4.13) we see that, for $i=0,1, \cdots, k$,

$$
\begin{equation*}
b_{n-2 i}=\left(u_{1}-\varepsilon\right) C_{n}\left(\prod_{h=i+1}^{k} u_{n-2 h}\right)^{2} \frac{u_{n-2 i}^{l}-\varepsilon^{l}}{u_{n-2 i}-\varepsilon} \tag{4.34}
\end{equation*}
$$

where $C_{n}=\prod_{h \geq k+1} u_{n-2 h}^{2}$ satisfies by Lemma $4(i)$

$$
\begin{equation*}
\left(C_{n}, u_{n-2 k-1}\right)=1 \tag{4.35}
\end{equation*}
$$

By using Lemma 4 (ii) and (iii), we see from (4.34) that

$$
\begin{equation*}
b_{n-2 i} \equiv l \varepsilon^{l}\left(u_{1}-\varepsilon\right) C_{n} \varepsilon^{2(k-i)} \quad\left(\bmod u_{n-2 k-1}\right) \tag{4.36}
\end{equation*}
$$

for $i=0,1, \cdots, k$. Now we denote

$$
\begin{equation*}
D_{k}=\sum_{h=1}^{k} \varepsilon^{2 h} \tag{4.37}
\end{equation*}
$$

and we obtain from (4.33)

$$
\prod_{i=0}^{k-1} N_{i} \equiv \varepsilon^{k(2 l-1)}\left(\begin{array}{cc}
1 & 0 \tag{4.38}\\
l \varepsilon^{l}\left(u_{1}-\varepsilon\right) C_{n} D_{k} & 1
\end{array}\right) \quad\left(\bmod u_{n-2 k-1}\right)
$$

Finally, from (4.25) and (4.28) we have

$$
\binom{A_{n-1}}{A_{n}}=\left(\begin{array}{l}
\prod_{i=0}^{k-1} N_{i}
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
a_{n-2 k} & b_{n-2 k}
\end{array}\right)\binom{A_{n-2 k-2}}{A_{n-2 k-1}}
$$

As $a_{n-2 k} \equiv 0\left(\bmod u_{n-2 k-1}\right)$ by (4.12) since $n-2 k \geq 2$, this yields by using (4.36) and (4.38)

$$
\begin{equation*}
A_{n} \equiv l\left(u_{1}-\varepsilon\right) C_{n} \varepsilon^{k(2 l-1)+l}\left(D_{k}+1\right) A_{n-2 k-1} \quad\left(\bmod u_{n-2 k-1}\right) \tag{4.39}
\end{equation*}
$$

and the same holds for B_{n}. We now proceed as in the first case. As $d_{n-2 k-1} \mid u_{n-2 k-1}$ and $d_{n-2 k-1} \mid\left(A_{n}, B_{n}\right)$, we see by (4.39) and (4.20) that

$$
\begin{equation*}
d_{n-2 k-1} \mid l\left(u_{1}-\varepsilon\right) C_{n} \varepsilon^{k(2 l-1)+(n+1) l}\left(D_{k}+1\right)\left(u_{0} u_{1} \cdots u_{n-2 k-2}\right)^{l-1} \tag{4.40}
\end{equation*}
$$

As $d_{n-2 k-1} \mid u_{n-2 k-1}$, we have by Lemma 4 (i) and (4.35)

$$
d_{n-2 k-1} \mid l\left(u_{1}-\varepsilon\right)\left(D_{k}+1\right)
$$

and therefore by (4.37)

$$
\begin{equation*}
d_{n-2 k-1} \leq l\left(u_{1}-\varepsilon\right)(k+1) \varepsilon^{2 k}, \quad 0 \leq k \leq \frac{1}{2}(n-2) \tag{4.41}
\end{equation*}
$$

By using (4.31) and (4.41), we see that

$$
d_{1} d_{2} \cdots d_{n-1} \leq l^{n}\left(u_{1}-\varepsilon\right)^{n} n!\varepsilon^{2 n^{2}}
$$

which proves (4.23) and (4.19) and completes the proof of Theorem 1.

5. An alternative proof in a special case

In this section, we give an alternative proof of Theorem 1 in the case where $l=1$. Starting with (1.11), we can write

$$
\begin{equation*}
\gamma_{1, \varepsilon}-\sum_{k=0}^{n} \frac{\varepsilon^{2 k}}{u_{2 k}}=\sum_{k=n+1}^{\infty} \frac{\varepsilon^{2 k}}{u_{2 k}} \tag{5.1}
\end{equation*}
$$

We define for every integer $n \geq 0$

$$
\begin{equation*}
q_{n}=u_{0} u_{2} \cdots u_{2 n}, \quad R_{n}=\sum_{k=n+1}^{\infty} \frac{\varepsilon^{2 k}}{u_{2 k}} \tag{5.2}
\end{equation*}
$$

We also define p_{n} by induction by $p_{0}=1$ and

$$
\begin{equation*}
p_{n+1}=p_{n} u_{2 n+2}+\varepsilon^{2 n+2} q_{n} \tag{5.3}
\end{equation*}
$$

With these notations, (5.1) becomes

$$
\begin{equation*}
\gamma_{1, \varepsilon}-\frac{p_{n}}{q_{n}}=R_{n} \tag{5.4}
\end{equation*}
$$

and an easy induction using (5.3) and Lemma $4(i)$ shows that $\left(p_{n}, q_{n}\right)=1$ for every integer $n \geq 0$. Moreover, by Lemma 2, there exists a constant $\lambda>0$ such that

$$
\begin{equation*}
\log u_{2 n}=\lambda 4^{n}+O(1) \tag{5.5}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
\log q_{n}=\frac{\lambda}{3} 4^{n+1}+O(n) \tag{5.6}
\end{equation*}
$$

Now let h be any given positive number, arbitrarily small. By (5.5) and (5.6) we can find a positive integer N such that for every $n \geq N$

$$
\left\{\begin{array}{l}
(\lambda-h) 4^{n} \leq \log u_{2 n} \leq(\lambda+h) 4^{n} \tag{5.7}\\
\frac{1}{3}(\lambda-h) 4^{n+1} \leq \log q_{n} \leq \frac{1}{3}(\lambda+h) 4^{n+1} \\
-\log u_{2 n+2} \leq \log R_{n} \leq-(1-h) \log u_{2 n+2}
\end{array}\right.
$$

Hence for $n \geq N$ we have

$$
-3 \frac{\lambda+h}{\lambda-h} \log q_{n} \leq \log R_{n} \leq-3 \frac{(1-h)(\lambda-h)}{\lambda+h} \log q_{n}
$$

Therefore we obtain from (5.4)

$$
\begin{equation*}
\frac{1}{q_{n}^{\alpha}} \leq \gamma_{1, \varepsilon}-\frac{p_{n}}{q_{n}} \leq \frac{1}{q_{n}^{\beta}} \quad(n \geq N) \tag{5.8}
\end{equation*}
$$

where α and β are given by

$$
\begin{equation*}
\alpha=3 \frac{\lambda+h}{\lambda-h}, \quad \beta=3 \frac{(1-h)(\lambda-h)}{\lambda+h} . \tag{5.9}
\end{equation*}
$$

By (5.8) we see at once that $\mu\left(\gamma_{1, \varepsilon}\right) \geq \beta$. As h is arbitrarily small, this proves that $\mu\left(\gamma_{1, \varepsilon}\right) \geq 3$ by letting $h \rightarrow 0$. Now we proceed to the proof that $\mu\left(\gamma_{1, \varepsilon}\right) \leq 3$. For this, we consider an irreducible rational number p / q and distinguish two cases.

First case: There exists $n \geq N$ such that $p q_{n}-q p_{n}=0$. As the fractions p / q and p_{n} / q_{n} are both irreducible, we have $p=p_{n}$ and $q=q_{n}$ and from the left inequality in (5.8) we get

$$
\begin{equation*}
\left|\gamma_{1, \varepsilon}-\frac{p}{q}\right| \geq \frac{1}{q^{\alpha}} . \tag{5.10}
\end{equation*}
$$

Second case: We have $p q_{n}-q p_{n} \neq 0$ for every $n \geq N$. In this case, fix a positive integer Q such that

$$
\frac{Q}{q_{N}^{\beta-1}} \geq \frac{1}{2}
$$

and assume that $|q| \geq Q$. Let $n \geq N$ be the least integer such that

$$
\begin{equation*}
\frac{|q|}{q_{n}^{\beta-1}}<\frac{1}{2} \tag{5.11}
\end{equation*}
$$

Then $n \geq N+1$ and by definition of n we can write

$$
\log q_{n-1} \leq \frac{1}{\beta-1} \log (2|q|)
$$

which yieds by using (5.7)

$$
\begin{equation*}
\log q_{n} \leq \frac{4}{3}(\lambda+h) 4^{n} \leq 4 \frac{\lambda+h}{\lambda-h} \log q_{n-1} \leq \delta \log (2|q|) \tag{5.12}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta=4 \frac{\lambda+h}{(\lambda-h)(\beta-1)} \tag{5.13}
\end{equation*}
$$

As $p q_{n}-q p_{n} \neq 0$, we can write for $|q| \geq Q$

$$
\begin{aligned}
1 & \leq\left|p q_{n}-q p_{n}\right| \leq|q|\left|q_{n} \gamma_{1, \varepsilon}-p_{n}\right|+q_{n}\left|q \gamma_{1, \varepsilon}-p\right| \\
& \leq \frac{|q|}{q_{n}^{\beta-1}}+\left|q_{n}\right|\left|q \gamma_{1, \varepsilon}-p\right|<\frac{1}{2}+q_{n}\left|q \gamma_{1, \varepsilon}-p\right|
\end{aligned}
$$

where we have used (5.8) and (5.11). This implies

$$
\left|\gamma_{1, \varepsilon}-\frac{p}{q}\right|>\frac{1}{2|q| q_{n}}
$$

and by using (5.12)

$$
\begin{equation*}
\left|\gamma_{1, \varepsilon}-\frac{p}{q}\right|>\frac{1}{(2|q|)^{\delta+1}}>\frac{1}{|q|^{\delta+1+h}} \tag{5.14}
\end{equation*}
$$

for $|q| \geq Q^{\prime} \geq Q$. By considering (5.10) and (5.14) we see that

$$
\mu\left(\gamma_{1, \varepsilon}\right) \leq \max (\alpha, \delta+1+h)
$$

Letting $h \rightarrow 0$ yields $\mu\left(\gamma_{1, \varepsilon}\right) \leq 3$, which completes the proof.

Acknowledgment. The authors thank the referees for correcting mistakes and many useful remarks, in particular for suggesting the possibility of the alternative proof given in section 5 .

References

[1] P.-G. Becker, Algebraic independence of the values of certain series by Mahler's method, Mh. Math. 114 (1992), 183-198.
[2] E. Cahen, Note sur un développement des quantités numériques, qui présente quelque analogie avec celui en fraction continue, Nouv. Ann. Math. 10 (1891), 508-514.
[3] M. Coons, On the rational approximation of the sum of the reciprocals of the Fermat numbers, Ramanujan J. 30, No1 (2013), 39-65; addendum ibid. 37, No1 (2015), 109-111.
[4] J. L. Davison and J. O. Shallit, Continued fractions for some alternating series, Mh. Math. 111 (1991), 119-126.
[5] D. Duverney, Number Theory : an elementary introduction through diophantine problems, Monographs in Number Theory 4, World Scientific, 2010.
[6] J. Hančl, K. Leppällä, T. Matala-aho and T. Törmä, On irrationality exponents of generalized continued fractions, J. Number Th. 151 (2015), 18-35.
[7] W. B. Jones and W. J. Thron, Continued Fractions : analytic theory and applications, Encyclopedia of Math. and its applications 11, Addison-Wesley, 1980.
[8] K. F. Roth, Rational approximations to algebraic numbers, Mathematika, vol. 2, $\mathrm{n}^{\circ} 1,1955$, 1-20.
[9] W. Sierpinski, Sur un algorithme pour développer les nombres réels en séries rapidement convergentes, Bull. Intern. Acad. Sci. Cracovie (1911), 508-514.
[10] J. Sondow, Irrationality measures, irrationality bases and a theorem of Jarnik, https://arxiv.org/abs/math/0406300v1 (2004).
[11] J. J. Sylvester, On a point in the theory of vulgar functions, Amer. J. Math. 3 (1880), 332-335.
Daniel Duverney, Baggio Engineering School, Lille, France, Iekata Shiokawa, Department of Mathematics, Keio University, Yokohama, Japan

E-mail address: daniel.duverney@orange.fr, shiokawa@beige.ocn.ne.jp

[^0]: 1991 Mathematics Subject Classification. Primary 11J82; Secondary 11J70.
 Key words and phrases. Irrationality exponent, Cahen's constant, Continued fractions, Sylvester sequence, Sierpinski sequence.

